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Introduction
Flickering lights produce visual hallucinations in the

form of simple geometric patterns in the visual cortex. In a
subjective study on perceived hallucinations from flickering
light, spirals, targets and honeycombs were reported.1 A
study using firing rate models showed that cortical lateral
inhibition produces instabilities at specific frequencies
which allows for pattern formation. Flickering with higher
frequencies that allow for period doubling produce stripes.
Period doubling occurs because the network cannot keep
up with higher frequency flickering so a period is twice the
flickering period. Lower frequencies produce hexagons.2

In this study, the effects of the flicker’s duty cycle, the
proportion of the flicker’s period which is in an active state,
on the pattern formation are investigated.

Model
The primary visual cortex is modeled with a spatially
distributed excitatory inhibitory layered Wilson-Cowan firing
rate model. 𝜏𝑒,𝑖 is the time constant of the layer, 𝑈𝑒,𝑖(x) is
the population activity, 𝐹 𝑢 = 1/(1 + exp −𝑢 )	 is a
nonlinearity representing firing rate, 𝑎𝑥𝑦 is x->y layer
connection strength, 𝜃𝑒,𝑖	is the threshold, and 𝑔𝑒,𝑖 is the
stimulus strength.

				𝜏𝑒
𝑑𝑈𝑒
𝑑𝑡
= −𝑈𝑒(𝑥, 𝑡) + 𝐹(𝑎𝑒𝑒𝐾𝑒 𝑥 ∗ 𝑈𝑒 𝑥, 𝑡 − 𝑎𝑖𝑒𝐾𝑖 𝑥 ∗ 𝑈𝑖 𝑥, 𝑡 −

											𝜃𝑒+𝑔𝑒𝑆 𝑡 )
𝜏𝑖
𝑑𝑈𝑖
𝑑𝑡
= −𝑈𝑖(𝑥, 𝑡) + 𝐹(𝑎𝑒𝑖𝐾𝑒 𝑥 ∗ 𝑈𝑒 𝑥, 𝑡 − 𝑎𝑖𝑖𝐾𝑖 𝑥 ∗ 𝑈𝑖 𝑥, 𝑡 −

	𝜃𝑖	+	𝑔𝑖𝑆 𝑡 )

The spatially convolving kernel, 𝐾𝑒,𝑖 𝑥 , describes how the
excitatory and inhibitory neural populations are locally
connected. The neural populations are laid out in a square.

𝐾𝑒,𝑖 𝑥 = 	
1

𝜋𝜎?,@A
𝑒−(𝑥2CDE)/𝜎𝑒,𝑖
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The stimulus is a square wave with the duty cycle
corresponding to 𝑡ℎ. The stimulus is smoothed with the
nonlinearity, H.

𝑆 𝑡 = 𝐻(sin
2𝜋𝑡
𝑇 − 𝑡ℎ)

The visual field is projected onto the cortex with radial
distance from visual field center, 𝜖, and azimuthal angle
around the visual field, a.3

𝑋 = ln 1 + 𝜖 												 	𝑌 = −
𝜖𝑎
1 + 𝜖

Stability Analysis

𝑡ℎ = 0.2 𝑡ℎ = 0.4 𝑡ℎ = 0.6 𝑡ℎ = 0.8
𝑇 = 60

𝑇 = 110

𝑇 = 127

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 	𝑔? = 0.8, 𝑔@ = 0, 𝜏? = 10𝑚𝑠, 𝜏@ = 20𝑚𝑠, 𝑎[[ = 10,	𝑎[\= 12, 𝑎\[ = 8.5,	𝑎\\= 10, 𝜃? = 2, 𝜃@ = 3.5, 𝜎? = 10, 𝜎@ = 25	

Pattern Formation Across Duty Cycle and Stimulus Period

Stability conditions for +1 Floquet multiplier
with respect to wave number, k, for non-
period doubling solutions (T=128). Wave
numbers below 0 correspond to instabilities
that can produce patterns.

Stability conditions for -1 Floquet multiplier with 
respect to wave number, k, for period doubling
Solutions (T=60). Wave numbers below 0 
correspond to instabilities that can produce 
patterns. 

Visual Cortex to Retina Mapping

Stability conditions for -1 Floquet multiplier
with respect to wave number, k, for non-
period doubling solutions (T=128).

Stability conditions for +1 Floquet 
multiplier with respect to wave number, k, 
for period doubling solutions (T=60). 

𝑇
= 60,
𝑡ℎ
= 0.4

𝑇
= 128,
𝑡ℎ
= 0.4

𝑇
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Discussion
Duty cycle plays a significant role in pattern formation

for non period doubling frequencies (T=110,127).
However, duty cycle does not have a significant effect in
pattern formation for period doubling frequencies (T=60).

For the graph of +1 Floquet multiplier vs wave number,
two local minima begin to emerge for higher duty cycle
(lower th). The second local minimum has twice the wave
number as the first. This creates a resonance of unstable
Turing modes for the original spatial frequency, k, and
double the wave number, 2k. We hypothesize that the
resonance in the two wave numbers allow for patterns
such as the stripes with spots seen in T=127 and th=0.4.
The stripes would correspond to the first local minimum
and the spots would correspond to the second local
minimum.

In the period doubling cases, the Floquet multiplier
curves do not change significantly for different duty cycles.
These findings support the stimulations which show
insignificant variation in patterns across duty cycle.

Future work would involve investigating the normal
forms of the symmetry breaking bifurcation to understand
the resonance in the stripes and dots pattern seen with
T=127 and th=0.4 and the pattern forming bifurcation
between th=0.4 and 0.6.

References
1. Becker C, Elliott MA (2006) Flicker-induced color and form: interdependencies and relation to stimulation frequency and phase. Conscious 

Cogn 15: 175–196.
2. Rule, M., Stoffregen, M., and Ermentrout, B. (2011). A model for the origin and properties of flicker-induced geometric phosphenes. PLoS

Comput. Biol. 7, e1002158.
3. Dayan P, Abbott LF (2001) Theoretical neuroscience. Computational Neuroscience. CambridgeMA: MIT Press, xvi+460 pp. Computational and 

mathematical modeling of neural systems.

Duty=0.2 T=60ms Time=10000

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

k k

k k


