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A Connectionist Approach to Word
Reading and Acquired Dyslexia:

Extension to Sequential Processing
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A connectionist approach to word reading, based on the principles of dis-
tributed representation, graded learning of statistical structure, and interac-
tivity in processing, has led to the development of explicit computational
models which account for a wide range of data on normal skilled reading and
on patterns of reading impairment due to brain damage. There have, how-
ever, been recent empirical challenges to these models, and the approach in
general, relating to the influence of orthographic length on the naming
latencies of both normal and dyslexic readers. The current work presents a
simulation which generates sequential phonological output in response to
written input, and which can refixate the input when encountering difficulty.
The normal model reads both words and nonwords accurately, and exhibits
an effect of orthographic length and a frequency-by-consistency interaction
in its naming latencies. When subject to peripheral damage, the model
exhibits an increased length effect that interacts with word frequency, char-
acteristic of letter-by-letter reading in pure alexia. Although the model is far
from a fully adequate account of all the relevant phenomena, it suggests how
connectionist models may be extended to provide deeper insight into se-
quential processes in reading.

I. INTRODUCTION

Many researchers assume that the most appropriate way to express the systematic aspects
of language is in terms of a set of rules. For instance, there is a systematic relationship
between the written and spoken forms of most English words (e.g.,GAVE f /geIV/), and
this relationship can be expressed in terms of a fairly concise set of grapheme-phoneme
correspondence (GPC) rules (e.g.,Gf /g/, A_Ef /eI/, V f /v/). In addition to being able
to generate accurate pronunciations of so-calledregular words, such rules also provide a
straightforward account of how skilled readers apply their knowledge to novel items—for
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example, in pronouncing word-like nonwords (e.g.,MAVE f /meIV/). Most linguistic
domains, however, are only partially systematic. Thus, there are many English words
whose pronunciations violate the standard GPC rules (e.g.,HAVE f /hæv/). Given that
skilled readers can pronounce suchexceptionwords correctly, GPC rules alone are
insufficient. More generally, skilled language performance at every level of analysis—
phonological, morphological, lexical, syntactic—requires both effective handling of ex-
ceptional items and the ability to generalize to novel forms.

In the domain of reading, there are three broad responses to this challenge. The first,
adopted by “dual-route” theories (e.g., Coltheart, Curtis, Atkins, & Haller, 1993; Zorzi,
Houghton, & Butterworth, 1998), is to add to the GPC system a separate, lexical system
that handles the exceptions. The second response, adopted by “multiple levels” theories
(e.g., Norris, 1994; Shallice & McCarthy, 1985), is to augment the GPC rules with more
specific, context-sensitive rules, (e.g.,OOKf /uK/ as in book), including rules that apply
only to individual exceptions (e.g.,HAVE f /hæv/). Both of these approaches retain the
general notion that language knowledge takes the form of rules (although such rules may
be expressed in terms of connections; see for example, Norris, 1994; Reggia, Marsland,
& Berndt, 1988; Zorzi et al., 1998).

The third response to the challenge, adopted by distributed connectionist theories
(Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989; Van
Orden, Pennington, & Stone, 1990) and elaborated in the current paper, is more radical.
It eschews the notion that the knowledge supporting online language performance takes
the form of explicit rules, and thus denies a strict dichotomy between “regular” items that
obey the rules and “exception” items that violate them. Rather, it is claimed that language
knowledge is inherently graded, and the language mechanism is a learning device that
gradually picks up on the statistical structure among written and spoken words and the
contexts in which they occur. In this way, the emphasis is on the degree to which the
mappings among the spelling, sound, and meaning of a given word are consistent with
those of other words (Glushko, 1979).

To make this third perspective concrete, consider the connectionist/parallel distributed
processing (PDP) framework for lexical processing depicted in Figure 1 (based on
Seidenberg & McClelland, 1989). As the figure makes clear, the approach does not entail
a complete lack of structure within the reading system. There is, however, uniformity in
the processing mechanisms by which representations are generated and interact, and in
this respect the approach is quite different from dual-route accounts. Orthographic,
phonological, and semantic information is represented in terms of distributed patterns of
activity over groups of simple neuron-like processing units. Within each domain, similar
words are represented by similar patterns of activity. Lexical tasks involve transformations
between these representations—for example, reading aloud requires the orthographic
pattern for a word to generate the appropriate phonological pattern. Such transformations
are accomplished via the cooperative and competitive interactions among units, including
additionalhiddenunits that mediate between the orthographic, phonological, and semantic
units. In processing an input, units interact until the network as a whole settles into a stable
pattern of activity—termed anattractor—corresponding to its interpretation of the input.
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Unit interactions are governed by weighted connections between them, which collectively
encode the system’s knowledge about how the different types of information are related.
Weights that give rise to the appropriate transformations are learned on the basis of the
system’s exposure to written words, spoken words, and their meanings.

At a general level, the distributed connectionist approach to word reading is based on
three general computational principles:

Distributed Representation.Orthography, phonology, and semantics are represented by
distributed patterns of activity such that similar words are represented by similar patterns.

Gradual Learning of Statistical Structure.Knowledge of the relationships among
orthography, phonology, and semantics is encoded across connection weights that are
learned gradually through repeated experience with words in a way that is sensitive to the
statistical structure of each mapping.

Interactivity in Processing.Mapping among orthography, phonology, and semantics is
accomplished through the simultaneous interaction of many units, such that familiar
patterns form stable attractors.

Although these principles are general, the challenge is to demonstrate that, when instan-
tiated in a particular domain—single word reading—these principles provide important
insights into the patterns of normal and impaired cognitive behavior. The current article
reviews a series of computational simulations of word reading based on the framework
depicted in Figure 1. It then presents new simulation work that address some limitations
of this work, relating to sequential processing and effects of orthographic length.

Figure 1. A connectionist framework for lexical processing, based on that of Seidenberg and
McClelland (1989). Reprinted from Plaut (1997).
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II. BACKGROUND

Skilled Oral Reading

The distributed connectionist framework for word reading depicted in Figure 1 reflects a
radical departure from traditional theorizing about lexical processing, particularly in two
ways. First, there is nothing in the structure of the system that corresponds to individual
words per se, such as a lexical entry, localist word unit (McClelland & Rumelhart, 1981)
or “logogen” (Morton, 1969). Rather, words are distinguished from nonwords only by
functional properties of the system—the way in which particular orthographic, phono-
logical, and semantic patterns of activity interact (also see Plaut, 1997; Van Orden et al.,
1990). Second, there are no separate mechanisms for lexical and sublexical processing (cf.
Coltheart et al., 1993). Rather, all parts of the system participate in processing all types of
input, although, of course, the contributions of different parts may be more or less
important for different inputs.

In support of the general framework, Seidenberg and McClelland (1989) trained a
connectionist network to map from the orthography of about 3000 monosyllabic English
words—both regular and exception—to their phonology. The network corresponded to
the bottom portion of the framework in Figure 1 (referred to as thephonologicalpathway).
After training, the network pronounced nearly all of the words correctly, including most
exception words. It also exhibited the standard empirical pattern of an interaction of
frequency and consistency in naming latency (see, e.g., Taraban & McClelland, 1987)
when its real-valued accuracy in generating a response was taken as a proxy for response
time. However, the model was much worse than skilled readers at pronouncing ortho-
graphically legal nonwords (Besner, Twilley, McCann, & Seergobin, 1990) and at lexical
decision under some conditions (Besner et al., 1990; Fera & Besner, 1992). Thus, the
model failed to refute traditional claims that localist, word-specific representations and
separate mechanisms are necessary to account for skilled reading.

More recently, Plaut, McClelland, Seidenberg, and Patterson (1996, also see Seiden-
berg, Plaut, Petersen, McClelland, & McRae, 1994) have shown that the limitations of the
Seidenberg and McClelland model in pronouncing nonwords stem not from any general
limitation in the abilities of connectionist networks in quasi-regular domains (as suggested
by, e.g., Coltheart et al., 1993), but from its use of poorly structured orthographic and
phonological representations. The original simulation used representations based on
context-sensitive triples of letters or phonemic features. When more appropriately struc-
tured representations are used—based on graphemes and phonemes and embodying
phonotactic and graphotactic constraints—network implementations of the phonological
pathway can learn to pronounce regular words, exception words, and nonwords as well as
skilled readers. Moreover, the networks exhibit the empirical frequency-by-consistency
interaction pattern when trained on actual word frequencies. This remains true if naming
latencies are modeled directly by the settling time of a recurrent, attractor network (see
Figure 2).

Plaut et al. (1996) also offered a mathematical analysis of the critical factors that
govern why the networks (and, by hypothesis, subjects) behave as they do. Stated
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generally, factors that increase the summed input to units (e.g., word frequency, spelling-
sound consistency) generally improve performance, but their contributions are subject to
“diminishing returns” due to the asymptotic nature of the sigmoidal activation function.
As a result, performance on stimuli that are strong in one factor is relatively insensitive
to variation in other factors. Thus, regular words show little effect of frequency, and
high-frequency words show little effect of consistency, giving rise to the standard pattern
of interaction between frequency and consistency, in which the naming of low-frequency
exception words is disproportionately slow or inaccurate.

Surface Dyslexia

Although implementations of the phonological pathway on its own can learn to pronounce
words and nonwords as well as skilled readers, a central aspect of Plaut et al.’s (1996)
general theory is that skilled reading more typically requires the combined support of both
the semantic and phonological pathways, and that individuals may differ in the relative
competence of each pathway. A consideration of semantics is particularly important in the
context of accounting for a pattern of reading impairment known assurfacedyslexia (see
Patterson, Coltheart, & Marshall, 1985), which typically arises from damage to the left
temporal lobe. Surface dyslexic patients read nonwords and regular words with normal
accuracy and latency, but exhibit an interaction of frequency and consistency in word
reading accuracy, such that low-frequency exception words are pronounced dispropor-
tionately poorly, often eliciting a pronunciation consistent with more standard spelling-
sound correspondences (e.g.,SEW read as “sue,” termed aregularizationerror).

The framework for lexical processing depicted in Figure 1 (and the associated com-
putational principles) provides an account of surface dyslexia based on the relative
contributions of the semantic and phonological pathways in oral reading. To the extent

Figure 2. The frequency-by-consistency interaction exhibited in the settling time of an attractor
network implementation of the phonological pathway in pronouncing words of varying frequency and
spelling-sound consistency. Reprinted from Plaut, McClelland, Seidenberg, & Patterson (1996).
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that the semantic pathway reduces performance error during training by contributing to the
correct pronunciation of words, the phonological pathway will experience less pressure to
learn to pronounce all of the words by itself. Rather, this pathway will tend to learn best
those words high in frequency and/or consistency; on its own it may never master
low-frequency exception words completely. On this account, the combination of the
semantic and phonological pathways is fully competent in normal readers, but brain
damage that impairs the semantic pathway reveals the latent limitations of an intact but
isolated phonological pathway, giving rise to surface dyslexia. Plaut et al. (1996) explored
the viability of this account by extending their simulations of the phonological pathway to
include influences from a putative semantic pathway. They approximated the contribution
that a semantic pathway would make to oral reading by providing the output (phoneme)
units of the phonological pathway with external input that pushed the activations of these
units towards the correct pronunciation of each word during training. Plaut and colleagues
found that, indeed, a phonological pathway trained in the context of support from
semantics exhibited the central phenomena of surface dyslexia when the contribution of
semantics was removed. Moreover, individual differences in the severity of surface
dyslexia could arise, not only from differences in the amount of semantic damage, but also
from premorbiddifferences in the division of labor between the semantic and phonolog-
ical pathways (Plaut, 1997). Thus, the few patients exhibiting mild to moderate semantic
impairments without concomitant regularization errors (DRN; Cipolotti & Warrington,
1995; DC; Lambon Ralph, Ellis, & Franklin, 1995) may have, for various reasons, reading
systems with relatively weak reliance on the semantic pathway.

Deep and Phonological Dyslexia

Patients withdeepdyslexia (see Coltheart, Patterson, & Marshall, 1980) have reading
impairments that are in many ways opposite to those with surface dyslexia, in that they
appear to read almost entirely via semantics. Deep dyslexic patients are thought to have
severe damage to the phonological pathway, as evidenced by their virtual inability to read
even the simplest of pronounceable nonwords. They also have impairments in reading
words that suggest additional partial damage to the semantic pathway. In particular, the
hallmark symptom of deep dyslexia is the occurrence of semantic errors in oral reading
(e.g., readingCAT as “dog”). Interestingly, these semantic errors co-occur with pure visual
errors (e.g.,CATf “cot”), mixed visual-and-semanticerrors (e.g.,CATf “rat”), and even
mediated visual-then-semantic errors (e.g.,SYMPATHY f “orchestra,” presumably via
symphony). Furthermore, correct performance depends on part-of-speech (nouns. ad-
jectives. verbs. function words) and concreteness or imageability (concrete, imageable
words. abstract, less imageable words). Finally, differences across patients in written
and spoken comprehension, and in the distribution of error types, suggests that the
secondary damage to the semantic pathway may occur before, within, or after semantics
(Shallice & Warrington, 1980).

Deep dyslexia is closely related to another type of acquired dyslexia—so-called
phonologicaldyslexia (Beauvois & Derouesne, 1979), involving a selective impairment in
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reading nonwords compared with words (without concomitant semantic errors). Indeed,
some authors (Friedman, 1996; Glosser & Friedman, 1990) have argued that deep dyslexia
is only the most severe form of phonological dyslexia.

Hinton and Shallice (1991) reproduced the co-occurrence of visual, semantic, and
mixed visual-and-semantic errors in deep dyslexia by damaging a connectionist network
that mapped orthography to semantics. During training, the network learned to form
attractors for 40 word meanings across five categories, such that patterns of semantic
features that were similar to a known word meaning were pulled to that exact meaning
over the course of settling. When the network was damaged, the initial semantic activity
caused by an input would occasionally fall within a neighboring attractor basin, giving rise
to an error response. These errors were often semantically related to the stimulus because
words with similar meanings correspond to nearby attractors in semantic space. The
damaged network also produced visual errors due to its inherent bias towards similarity:
visually similar words tend to produce similar initial semantic patterns, which can lead to
a visual error if the basins are distorted by damage (see Figure 3).

Plaut and Shallice (1993) extended these initial findings in a number of ways. They
established the generality of the co-occurrence of error types across a wide range of
simulations, showing that it does not depend on specific characteristics of the network
architecture, the learning procedure, or the way responses are generated from semantic
activity. Plaut and Shallice also carried out additional simulations to address the influence
of concreteness on the reading performance of deep dyslexic patients. An implementation
of the full semantic pathway was trained to pronounce a new set of words consisting of
both concrete and abstract words. Concrete words were assigned far more semantic
features than were abstract words, under the assumption that the semantic representations

Figure 3. A depiction of the attractor landscape for a network that maps orthography to semantics,
and how damage to the network can distort the attractors (dashed oval) in a way that gives rise to both
semantic errors (e.g., CAT f “dog”) and visual errors (e.g., BOG f “dog”). Adapted from Plaut and
Shallice (1993).
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of concrete words are less dependent on the contexts in which they occur (Jones, 1985;
Saffran, Bogyo, Schwartz, & Marin, 1980). As a result, the network developed stronger
attractors for concrete than abstract words during training, giving rise to better perfor-
mance in reading concrete words compared with abstract words under most types of
damage, as observed in deep dyslexia. Surprisingly, severe damage to connections
implementing the attractors at the semantic level produced the opposite pattern, in which
the network read concrete words morepoorly than abstract words. This latter pattern of
performance corresponds to that of CAV, the single, enigmatic patient withconcrete word
dyslexia(Warrington, 1981). Taken together, CAV and the deep dyslexic patients con-
stitute a double dissociation between reading concrete versus abstract words, which has
typically been interpreted as implying that there are separate modules within the cognitive
system for these word classes (see, e.g., Morton & Patterson, 1980). The Plaut and
Shallice simulation demonstrates that such a radical interpretation is unnecessary: the
double dissociation can arise from damage to different parts of a distributed network, in
which parts process both types of items but develop somewhat different functional
specializations through learning (see Bullinaria & Chater, 1993; Plaut, 1995, for further
results and discussion).

Taken together, the modeling work described above provides strong support for a
connectionist approach to normal and impaired word reading, embodying the computa-
tional principles outlined in the Introduction: distributed representation, gradual learning
of statistical structure, and interactivity in processing. There have, however, been recent
empirical challenges to the specific models in particular, and the framework in general,
which ultimately need to be addressed if the approach is to remain viable as an account
of human performance. A number of these relate to the influence of orthographic length
on the naming latencies of both normal and dyslexic readers.

III. CURRENT CHALLENGES: LENGTH EFFECTS

An aspect of the Seidenberg and McClelland (1989) and Plaut et al. (1996) models that
has contributed substantially to their theoretical impact is that, because they were trained
on a sufficiently extensive corpus of words, their performance can be compared directly
with that of human subjects on the very same stimuli. These comparisons have largely
been successfully at the level of accounting for the effects of factorial manipulations (e.g.,
word frequency, spelling-sound consistency). More recently, however, the models have
been found to be lacking when compared with human performance on an item-by-item
basis. For instance, Spieler and Balota (1997) correlated the mean naming latencies of 31
subjects naming 2820 words with the models’ latencies for the same words, and found that
the models accounted for only about 3–10% of the variance associated with individual
items. By contrast, the combination of the traditional measures of log frequency, ortho-
graphic length, and orthographic neighborhood size (Coltheart’s N) collectively accounted
for 21.7% of the variance; including an encoding of phonetic properties of the onset
phoneme increased this figure to 43.1%.

550 PLAUT



In response, Seidenberg and Plaut (1998) carried out additional analyses with the
Spieler and Balota (1997) dataset as well as another large naming dataset (Seidenberg &
Waters, 1989). They found that the models did not account well for effects of orthographic
length, but when the model measures and length were entered first in a stepwise
regression, there was little remaining variance accounted for by log frequency and
orthographic neighborhood. Specificaly, each traditional variable accounted for less than
1.7% of the remaining variance in all conditions, except that log frequency still accounted
for 4.8% of the variance in the Spieler and Balota dataset (but only 0.25% in the other
dataset) after length and the Plaut et al. (1996) RTs were partialed out. Thus the models
provide a reasonably good (as well as mechanistic) account of the influence of these
traditional factors on naming performance. With regard to orthographic length, Seiden-
berg and Plaut argued that the effects of this factor were due largely to visual and
articulatory factors outside the domain of the existing models.1

More recently, Chris Kello (personal communication, January 1998) has provided
some support for this claim. He hypothesized that some of the observed length effect
might be due to the fact that longer monosyllabic words are more likely to have complex
onset consonant clusters (e.g., /pr/, /str/), and the reduced acoustic amplitude at the
beginning of such clusters introduces delay in tripping a standard voice key. For example,
a voice key might register the /r/ in bothRING andSTRING, yielding an overly long RT in
the latter case (extended by roughly the duration of the /st/). Kello repeated the Spieler and
Balota (1997) stepwise regression analysis but used a more sophisticated encoding of the
phonetic properties of word onsets, including the presence of certain consonant clusters.
He found that, compared with the use of Spieler and Balota’s encoding, the new encoding
reduced the amount of residual variance accounted for by orthographic length by well over
half, from 7.5% to 3.3%. These results indicate that a sizable amount of the effects of
orthographic length can be accounted for by articulatory onset characteristics.

Although articulatory factors may contribute substantially to length effects, they cannot
be the whole story. Recently, Weekes (1997) has demonstrated differential effects of
length for words versus nonwords matched for onset characteristics. Specifically, using
three- to six-letter words and nonwords, Weekes found reliable length effects for non-
words and for low- but not high-frequency words. When he partialed out orthographic
neighborhood size, the length effect was eliminated for words but not for nonwords.
Weekes argued that these findings pose problems for any account in which words and
nonwords are processed by a single mechanism.

Finally, length effects also play a prominent role in the analysis of acquired reading
impairments, particularly in the context of the letter-by-letter (LBL) reading of pure alexic
patients (Dejerine, 1892) and some nonfluent surface dyslexic patients (e.g., Patterson &
Kay, 1982). Although the accuracy of these patients can be quite high, their naming
latencies show an abnormally large word length effect, sometimes on the order of 1–3
seconds per letter (cf. 5–50 msec/letter for normal readers; Henderson, 1982). One account
of such patients (Patterson & Kay, 1982) is that they have a peripheral deficit that prevents
adequate activation of letter representations in parallel; they thus must resort to a
compensatory strategy of recognizing letters sequentially.
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There is, in fact, considerable independent evidence for peripheral impairments in LBL
readers (see Behrmann, Nelson, & Sekuler, 1998, for review). On the other hand, there is
also evidence for the influence of lexical/semantic factors on LBL reading performance.
There are two forms of this latter influence. First, when presented with words too briefly
to allow overt naming, some LBL readers can nonetheless perform lexical decision and
semantic categorizations tasks above chance (Coslett & Saffran, 1989; Shallice & Saffran,
1986). Quite apart from this type of “covert” reading, LBL readers also show lexical
effects on their letter-by-letter reading latencies. For example, Behrmann, Plaut, and
Nelson (1998) present data on seven LBL readers of varying severity, showing that the
magnitudes of their length effects interacted both with frequency and with imageability.
Moreover, these interactions were modulated by severity of the impairment, such that the
most severe patients showed the strongest lexical/semantic effects. Behrmann and col-
leagues argue that these higher-level effects in LBL reading are consistent with a
peripheral impairment given the interactive nature of processing with the reading system:
weakened (sequential) letter activation supports partial lexical/semantic activation that
accumulates over time and feeds back to facilitate subsequent letter processing. They also
propose that the sequential processing in LBL reading is not an abnormal strategy
employed only following brain damage, but is the manifestation of the normal reading
strategy of making additional fixations when encountering difficulty in reading text (Just
& Carpenter, 1987; Reichle, Pollatsek, & Rayner, 1998). For example, in order to enhance
stimulus quality, normal subjects make more fixations within long compared with short
words. LBL readers also fixate more frequently; in fact, given the very poor quality of the
visual input, they fixate almost every letter (Behrmann, Barton, Shomstein, & Black,
submitted for publication).

In summary, the effects of orthographic length on naming latency, both in normal and
brain-damaged subjects, place important constraints on theories of word reading, and
existing distributed models do not provide an adequate account of these effects. A fully
adequate model of length effects in reading would need to incorporate considerably
detailed perceptual and articulatory processes in addition to the more central processes
relating orthography, phonology, and semantics. The intent of the simulation described in
the following section is not so much to attempt such a comprehensive account, but rather
to begin an exploration of the kinds of networks and processes that might provide deeper
insight into length effects.

IV. SIMULATION

Method

A simple recurrent network (Elman, 1990) was trained to produce a sequence of phonemes
as output when given a string of position-specific letters as input. The training corpus
consisted of the 2998 monosyllabic words in the Plaut et al. (1996) corpus. The archi-
tecture of the network is shown in Figure 4. There are 26 letter units and a “blank” unit
at each of 10 positions. The third position from the left, indicated by the dark rectangle in
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the figure, corresponds to the point of fixation. These 270 letter units are fully connected
to 100 hidden units which, in turn, are fully connected to 36 phoneme units.2 The hidden
units also receive input from the previous states of phoneme units. In addition, there is a
fourth group ofpositionunits, with connections both to and from the hidden units, that the
network uses to keep track of where it is in the letter string as it is producing the
appropriate sequence of phonemes, analogous to a focus of attention. Two copies of the
position units and the phoneme units are shown in the figure simply to illustrate their
behavior over time. Finally, there is a “done” output unit that the network uses to indicate
that a pronunciation is complete. Including bias connections (equivalent to connections
from an additional unit with a fixed state of 1), the network had a total of 45,945
connections that were randomized uniformly between61 before training.3

In understanding how the network was trained, it will help to consider first its operation
after it has achieved a reasonable level of proficiency at its task. First, a word is selected

Figure 4. The network architecture for the refixation network. The arrows indicated full connectivity
between groups of units. The recurrent connections among the hidden units only convey information
about the last time step. The gray areas in the input and output units are intended to depict their
activities at an intermediate point in processing the word BAY, after the B f /b/ has been pronounced
(with no refixation) and the AY f /A/ is being attempted.
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from the training corpus according to a logarithmic function of its frequency of occurrence
(Kucera & Francis, 1967). Its string of letters is presented with the first letter at fixation,4

by activating the appropriate letter unit at each corresponding position, and the blank unit
at all other positions. Position information for internal letters is assumed to be somewhat
inaccurate (see, e.g., Mozer, 1983), so that the same letter units at neighboring internal
positions are also activated slightly (to .3). In Figure 4, the gray regions for letter units
indicate the activations for the word bay when fixating the b. Initially, the position unit
corresponding to fixation (numbered 0 by convention) is active and all others are inactive,
and all phoneme units are inactive. (In the figure, the states of position and phoneme units
show the network attemptingAY f /A/ after having generatedBf /b/.) Hidden unit states
are initialized to .2 at the beginning of processing the word.

The network then computes new states for the hidden units, phoneme units, and
position units. The network has two tasks: 1) to activate the phoneme corresponding to the
current grapheme, and 2) to activate the position of the next grapheme in the string (or,
if the end of the string is reached, the position of the adjacent blank). For example, when
attending to the letterB at fixation in BAY, the network must activate the /b/ unit and
position unit 1 (the position ofAY in the input). Specifically, the target activations for the
phoneme units consist of a one for the correct current phoneme and zeros elsewhere, and
the targets for the position units consist of a one for the position of the next grapheme/
blank in the string and zeros elsewhere. To the extent that the activations over the
phoneme and position units are inaccurate (i.e., not within .2 of their target values), error
is injected and back-propagated through the network. Performance error was measured by
the cross-entropy(see Hinton, 1989) between the correct and target activations.

Assuming that the network succeeds at generating the correct phoneme and position,
this information is then used to guide the production of the next phoneme and position. For
this purpose, the correct phoneme unit had to be activated above .7 and all others had to
be below .3, and the correct position unit had to be more active than any other position
unit. (During testing, this criterion applies to the most active phoneme unit rather than to
the “correct” unit.) As shown in Figure 4 forBAY, position unit 1 and the phoneme /b/ are
now active, the letter input remains the same, and the network must activate /A/, the
phoneme corresponding to the indicated graphemeAY); position unit 3, corresponding to
the blank following the string; and the “done” unit, indicating a complete pronunciation.
In general, when pronouncing a letter string, the network is trained to activate the
sequence of phonemes corresponding to its pronunciation, while simultaneously keeping
track of the position of the grapheme it is currently working on.

If, in pronouncing a letter string, every phoneme and position is generated correctly, the
activations over the letter units remain fixed. If, however, the network fails at generating
the correct phoneme or next position at some point, itrefixatesthe input string and tries
again. It does this by making the equivalent of a rightward saccade to fixate the
problematic grapheme, using the position units as a specification of its position relative to
fixation. This position information was generated over the position units on the previous
time step, and thus is available to guide the appropriate saccade.5 The actual saccade is
implemented by shifting the input activation of the letter units to the left by the specified
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amount, and resetting position unit 0 to be active. Following this, the network tries again
to pronounce the (now fixated) grapheme, and then the remainder of the input string.

In general, the network pronounces as much of the static input as it can until it runs into
trouble, then saccades to that part of the input and continues. Note that, early on in
training, the network repeatedly fails at generating correct output, and so is constantly
refixating. This means that essentially all of its training experience consists of pronounc-
ing graphemes (in context) at fixation. As the network learns to pronounce these correctly,
it begins to attempt to pronounce the graphemes in the near (right) periphery without
refixating. If it fails, it will make a saccade and use its more extensive experience at
fixation. Gradually, however, it will learn to pronounce these adjacent graphemes cor-
rectly, and will go on to attempt even more peripheral ones. In this way, the network’s
competence extends gradually from fixation rightward to larger and larger portions of
input strings, making fewer and fewer fixations per word as a result. However, the network
can always fall back on its more extensive experience at fixation whenever it encounters
difficulty. It is perhaps worth noting in this context that, although the network was trained
only on monosyllabic words for convenience, it would be entirely straightforward to apply
it to pronouncing polysyllabic words of arbitrary length.

To summarize, as the network is trained to produce the appropriate sequence of
phonemes for a letter string, it is also trained to maintain a representation of its current
position within the string. The network uses this position signal to refixate a peripheral
portion of the input when it finds that portion difficult to pronounce. This repositions the
input string so that the peripheral portion now falls at the point of fixation, where the
network has had more experience in generating pronunciations. In this way, the network
can apply the knowledge tied to the units at the point of fixation to any portion of the string
that is difficult for the network to read.

Results and Discussion

Normal Performance.The network was trained on 400, 000 word presentations with a
learning rate of .01, momentum of .9, and weight decay of .000001. The learning rate was
then reduced to .001 and the network was trained on an additional 50,000 word presen-
tations, in order to minimize the noise in the final weight values due to sampling error
among training examples. The total number of presentations per word ranged from about
40 to 600, with a median of 130. Figure 5 shows, over the course of training, both the
overall level of accuracy in pronouncing words as well as the mean number of fixations
required. At the end of training, the network read 2978/2998 (99.3%) of the words
correctly (where homographs were considered correct if they elicited either appropriate
pronunciation). The network made an average of 1.32 fixations per word in generating
correct pronunciations, with 2290 (76.9%) involving a single fixation. Just under half
(8/20) of the errors were regularizations of low-frequency exception words (e.g.,BROOCH

f “brewch,” SIEVEf “seeve”).
Given that the network essentially has a feedforward architecture and outputs only a

single phoneme at a time, it is not entirely clear what an appropriate measure of naming
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latency should be. The most natural analogue to the onset of acoustic energy that would
trip a voice key in a standard empirical study would be the real-valued error on the first
phoneme. This measure, however, fails to take into account the coarticulatory constraints
on executing a fluent pronunciation that apply for subjects but not for the model. A more
appropriate, albeit coarse measure in the current context is simply the number of fixations
required to generate a correct pronunciation. This measure directly reflects the degree of
difficulty that the system experiences in constructing a complete pronunciation.6

Figure 6 shows the mean number of fixations made by the model in generating correct
pronunciations for words in the training corpus as a function of their length in letters.
Using this measure as an analogue to naming latency, the model shows no latencies
differences between 3- and 4-letter words (F , 1), but a steady increase in latency for
four- to six-letter words and an overall length effect (F3,2932 5 76.7,p , .001) with a
slope of .18 fixations per letter.

The network was tested for its ability to account for two sets of recent findings
concerning length effects in normal readers. First, as mentioned earlier, Weekes (1997)
found reliable effects of orthographic length in the naming latencies for both words and
nonwords, but only the nonword effect remained reliable when orthographic neighbor-
hood size was partialed out. In applying the current model to Weekes’ stimuli, 24 of the
words had to be eliminated because they are not in the model’s training corpus; most of
these are inflected forms (e.g.,BOARDS, CALLED). Of the remaining items, the model
correctly pronounced 86/86 of the high-frequency words, 89/90 of the low-frequency
words, and 90/100 of the nonwords (where 4 of the 10 errors were on pseudo-inflected
forms; e.g.,BRANKS, LOAKED). A nonword pronunciation was scored as correct if it matched
the pronunciation of some word in the training corpus (e.g.,GROOK pronounced to rhyme
with BOOK; see Plaut et al., 1996, for details).

Figure 5. Percentage of words pronounced correctly by the network (top curve; left axis) and the mean
number of fixations required (bottom curve, right axis) as a function of the number of words presented
during training. The improvement in performance from 400, 000 to 450, 000 is due to a reduction in
learning rate (see text).
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Comparing four- versus six-letter stimuli, there was a reliable length effect in the mean
number of fixations made by the model in correctly pronouncing high-frequency words
(1.00 versus 1.25;F1,34 5 7.56,p , .01), low-frequency words (1.38 versus 1.79;F1,41

5 1.82, p , .05), and nonwords (1.61 versus 2.38;F1,42 5 6.55, p , .01). When
orthographic neighborhood size (calculated over the training corpus) was first partialed
out of the data, the length effects for both high- and low-frequency words were eliminated
(F1,34 , 1 andF1,41 5 1.43,p . .2, respectively) whereas the length effect for nonwords
remained reliable (F1,425 6.43,p , .05). The only discrepancy between these finding and
those of Weekes (1997) is that the small length effect for high-frequency words was
reliable for the model but not for the human subjects.

The second length effect to which the model was applied was the recent finding of
Rastle and Coltheart (1998) that, among five-letter nonwords, those with 3-phoneme
pronunciations (e.g.,FOOPH) produce longer naming latencies than those with 5-phoneme
pronunciations (e.g.,FROLP); note that this is an effect ofphonological rather than
orthographic length. Certain aspects of Rastle and Coltheat’s stimuli are problematic in the
current context—namely, 5 of the 24 5-phoneme nonwords are pseudo-inflected (e.g.,
FRULS). If these and the matched 3-phoneme nonwords are removed from the analysis, the
mean number of fixations made by the model in pronouncing the 3-phoneme nonwords is
numerically larger than that for the 5-phoneme nonwords, but the difference is not reliable
(2.95 versus 2.79, respectively; pairedt17 , 1). The null result may stem in part from the
small number of comparisons but also from the fact that, under the model’s phonological
encoding, the stimuli that Rastle and Coltheart considered to have three phonemes actually
had a mean phonological length of 3.58, as a number of the nonwords have four or even
five phonemes (e.g.,BARCHf /bartS/).

Figure 6. Mean number of fixations made by the network in pronouncing three- to six-letter words. The
y-axis scale is the same as that in Figure 9 for ease of comparison.
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The network was also tested for the standard effects of word frequency and spelling-
sound consistency in its number of fixations, using a list of 126 matched pairs of regular
and exception words falling into three frequency bands (Patterson & Hodges, 1992). The
network mispronounced five of the words, producing regularization errors to four low-
frequency exception words—BROOCH, SIEVE, SOOT, and SUEDE—and an irregularization
error to a low-frequency regular word—SOUR to rhyme withPOUR (see Patterson, Plaut,
McClelland, Seidenberg, Behrmann, & Hodges, 1996, for empirical evidence supporting
the occasional occurrence of such errors). Figure 7 shows the mean number of fixations
required to correctly pronounce the remaining words, as a function of their frequency and
consistency. Overall, there was a main effect of frequency (means: high 1.04, medium
1.35, low 1.62;F2,2415 22.4,p , .001) and a main effect of consistency (means: regular
1.14, exception 1.52;F1,241 5 27.5, p , .001), as well as a frequency-by-consistency
interaction, with low-frequency exception words requiring disproportionately more fixa-
tions (F2,241 5 7.67,p , .001). These results are in accord with the relevant empirical
findings on the naming latencies of skilled readers.

At the item level, the numbers of fixations made by the model was regressed against
the mean naming latencies of Spieler and Balota’s (1997) 31 subjects. Over the 2812/2820
words that the model pronounced correctly, its number of fixations accounted for 8.8% of
the variance in the latency data (t2810 5 16.5,p , .001). This value is much better than
that of the Plaut et al. (1996) model (3.3%) but not quite as good as the Seidenberg and
McClelland (1989) model (10.1%).

Finally, the network was tested for its accuracy in pronouncing three sets of nonwords
from two empirical studies: 1) 43 nonwords derived from regular words (Glushko, 1979),
2) 43 nonwords derived from exception words (Glushko, 1979), and 3) 80 nonwords used

Figure 7. Mean number of fixation required to produce correct pronunciations for words (Patterson &
Hodges, 1992) as a function of their frequency and spelling-sound consistency.
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as controls for a set of pseudohomophones (McCann & Besner, 1987). As before, a
nonword pronunciation was considered correct if it was consistent with some word in the
training corpus. Figure 8 shows the performance of the network on this criterion, as well
as the corresponding data for human subjects. The network was correct on 40/43 (93.0%)
of the regular nonwords, 41/43 (95.3%) of the exception nonwords, and 73/80 (91.3%) of
the control nonwords. By comparison, the corresponding levels of performance reported
for human subjects were 93.8% on regular nonwords and 95.9% on exception nonwords
(Glushko, 1979), and 88.6% on the control nonwords (McCann & Besner, 1987). More-
over, in pronouncing these nonwords, the mean number of fixations produced by the
network for correct pronunciations was 1.63 for the regular nonwords, 2.27 for the
exception nonwords, and 1.92 for the control nonwords. The overall mean for nonwords,
1.94, is comparable to the value for low-frequency exception words (2.00; see Figure 7).
Thus, the network’s nonword reading accuracy and latency is comparable to that of skilled
readers.

Performance Under a Peripheral Impairment.In order to model a peripheral deficit in
letter perception of the sort postulated by Behrmann, Plaut, and Nelson (1998) to produce
LBL reading, input letter activations were corrupted by Gaussian noise (SD5 .055).
When this was done, correct performance dropped from 99.3% to 90.0% correct (averaged
across 10 runs through the training corpus). Using a median split on frequency, accuracy
was greater on high- versus low-frequency words (91.7% versus 88.7%, respectively;
F1,29835 18.0,p , .001) and on short versus long words (e.g., 91.6% for 4-letter words
versus 86.8% for 6-letter words;F1,15235 14.1,p , .001).

Figure 8. Percent correct performance of the network and of human subjects in pronouncing three
sets of nonwords: regular and exception nonwords (N 5 43 each) from Glushko (1979), and control
nonwords (N 5 80) from McCann and Besner (1987).
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It was argued above that number of fixations can be used as a coarse approximation to
naming latency for skilled readers because this measure reflects the degree of difficulty in
constructing a coherent articulatory output. The situation is rather different in the context
of LBL reading because, in this case, it is more literally true that a pronunciation is
constructed incrementally. For this reason, number of fixations in the model can be taken
as a more direct analogue of the naming latency of LBL readers. Another plausible
measure—the total number of processing steps required by the model in generating a
pronunciation, including initial attempts and attempts after refixations—gives qualita-
tively equivalent results.

Among words pronounced correctly, the average number of fixations per word in-
creased from 1.32 to 2.20 as a result of the introduction of input noise. Not surprisingly,
this measure was strongly influenced by the length of the word. For example, the impaired
model made an average of 2.00 fixations on four-letter words but 2.97 fixations on 6-letter
words (F1,15225 380.1,p , .001), corresponding to a slope of 0.49 fixations per letter.
The model also made fewer fixations on high- versus low-frequency words (means 2.10
versus 2.30, respectively;F1,29735 50.5,p , .001). Finally, and most important for the
Behrmann, Plaut, and Nelson (1998) account of LBL reading, there was a clear interaction
of frequency and length. This was established by comparing performance on sets of 4- and
6-letter words matched for frequency (N 5 100 for each cell). The average number of
fixations per word for these stimuli is shown in Figure 9. In addition to main effects of
frequency (F1,396 5 7.13, p , .01) and length (F1,396 5 186.6,p , .001), frequency
interacted with length such that the effect of frequency was larger for six- than for
four-letter words (F1,396 5 4.96,p , .05). Thus, under peripheral damage, the network

Figure 9. Mean number of fixations made by the model in pronouncing 4- and 6-letter words as a
function of their frequency.
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exhibited the hallmark word length effect characteristic of LBL reading, combined with
the appropriate higher-level effects: a word frequency effect that was greater for long
compared with short words.7

In summary, a simple recurrent network was presented with words as letter strings over
position-specific units and was trained to generate the pronunciation of the word in the
form of a sequence of phonemes. The model had the ability to refixate the input string
when encountering difficulty. The network learned to pronounce correctly virtually all of
the 2998-word training corpus, including both regular and exception words, and also was
capable of pronouncing nonwords as well as skilled readers. Moreover, if mean number
of fixations was taken as an analogue of skilled naming latency, the model exhibited a
length effect as well as the standard frequency-by-consistency interaction observed in
empirical studies. Finally, peripheral damage to the model, in the form of corrupted letter
activations, gave rise to the hallmark characteristics of letter-by-letter reading, including
an increased length effect that interacts with lexical variables (e.g., word frequency).

V. GENERAL DISCUSSION

Connectionist modeling has made important contributions to a wide range of domains
within cognitive science. Word reading, in particular, has received considerable attention
because it is a highly learned skill that involves the rapid, online interaction of a number
of sources of information in an integrated fashion. There is also a wealth of detailed
empirical data on normal reading acquisition and skilled performance, as well as patterns
of reading impairments in developmental and acquired dyslexia, that play an essential role
in evaluating and constraining explicit computational models. The current article contrib-
utes to the development of a connectionist theory of normal and impaired word reading
based on three general computational principles: distributed representation, gradual learn-
ing of statistical structure, and interactivity in processing. This endeavor has led to a
number of important insights concerning the nature of the reading system, both in normal
operation and when impaired by brain damage. These insights do not typically follow
from alternative theoretical frameworks, although versions of them can be incorporated
into these frameworks in a post hoc manner. Moreover, many of the insights have
implications that extend beyond the specific domain of word reading. Four of these are
enumerated and discussed below.

1. The apparent dichotomy between “regular” versus “exception” items is a false one;
rather, items vary along a continuum ofconsistency(Glushko, 1979), and a single
mechanism can learn to process all types of items and yet also generalize effectively
to novel items.

This point was made first by Rumelhart and McClelland (1986) in the domain of
inflectional morphology, and later by Seidenberg and McClelland (1989) in the domain of
word reading. The impact of these early models was, however, undermined to a certain
extent by limitations in the models’ performance, particularly with respect to generaliza-
tion. In the domain of word reading, these limitations were addressed in subsequent
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modeling work (Plaut et al., 1996) by incorporating more appropriately structured ortho-
graphic and phonological representations.

Apart from issues of parsimony, the importance of a single-mechanism account is that
it provides insight into why there is so much shared structure between so-called regular
and exception items. For instance, the exception wordPINT has regular correspondences
for theP, N, andT, and even the exceptional receives a pronunciation that it adopts in many
other words (e.g.,PINE, DIE). Moreover, nonword pronunciation is influenced by exception
as well as regular neighbors (Glushko, 1979). Accounts that invoke separate mechanisms
for the regular versus exceptional aspects of language fail to explain or capitalize on this
shared structure.

2. Skilled performance is supported by the integration of multiple sources of informa-
tion; impaired performance following brain damage can reflect the underlying
division-of-labor among these sources in the premorbid system.

Patients with fluent surface dyslexia exhibit relatively normal reading of regular words
and nonwords but produce “regularization” errors to many exception words, particularly
those of low frequency. Dual-route theories explain surface dyslexia as partial damage to
the lexical (non-semantic) route that impairs low- more than high-frequency words, with
the spared regular and nonword reading supported by the undamaged nonlexical route.
There is, however, no explanation for why the lexical damage is alwayspartial—the
architecture provides equally well for complete elimination of the lexical route with
complete sparing of the nonlexical route. This would yield an inability to pronounce any
exception words with complete sparing of regular words and nonwords—a pattern that has
never been observed empirically. As exception word reading becomes very severely
impaired, regular word (and nonword) reading invariably begins to suffer (see Patterson
et al., 1996).

By contrast, on the Plaut et al. (1996) account, normal reading performance is
supported by the combination of both the phonological and semantic pathways, such that
the phonological pathway retains competence on high-frequency exception words. Thus,
the only way to completely eliminate exception word reading is to damage both pathways
to some extent, but this also impairs regular word and nonword reading (as observed
empirically).

3. The co-occurrence of different types of errors can arise from single lesions within a
distributed system that learns to map among the different types of information.

The error patterns of brain-damaged patients can place strong constraints on theoretical
accounts of cognitive processes. The traditional account of the co-occurrence of visual and
semantic errors in deep dyslexia (Morton & Patterson, 1980) assumes an impairment to
visual access of (abstract) semantics to explain the visual errors, and a second impairment
to semantic access of phonology to explain the semantic errors. The problem is that this
account explains the occurrence of visual errors and of semantic errors, but not their
co-occurrence: it is perfectly feasible within the framework to introduce only one of the
lesions—say, the second—and predict patients who produce only semantic errors. While
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such cases have been reported (e.g., KE; Hillis, Rapp, Romani, & Caramazza, 1990), the
vast majority of deep dyslexic patients make both visual and semantic errors (see
Coltheart, Patterson, & Marshall, 1987), and the traditional account fails to explain this.
An appeal to chance anatomic proximity of the related brain structures fails because the
co-occurrence is not symmetric; many dyslexic patients make visual errors but no
semantic errors.

On the connectionist account (Hinton & Shallice, 1991; Plaut & Shallice, 1993), the
co-occurrence of visual errors with semantic errors is a natural consequence of the nature
of learning within a distributed attractor network that maps orthography to semantics.
Essentially, the layout of attractor basins must be sensitive to both visual and semantic
similarity, and so these metrics are reflected in the types of errors that occur as a result of
damage.

4. A double dissociation in performing two tasks does not implicate separate modules
dedicated to performing each of the tasks, but can arise from graded functional
specialization with a distributed system that performs both tasks.

Cognitive neuropsychologists have traditionally assumed that if each of two tasks can
be selectively impaired by brain damage while leaving the other relatively intact, they
must be subserved by separate mechanisms. For example, the double dissociation in
reading concrete versus abstract words prompted Warrington and others (e.g., Morton &
Patterson, 1980) to assume that the semantics for abstract words was represented sepa-
rately from those for concrete words. Plaut and Shallice (1993; Plaut, 1995) showed,
however, that this pattern can arise within a network without separate modules for
concrete and abstract words. Rather, different parts of the system develop a degree of
functional specialization through learning as a result of differences in the statistical
properties of word meaning (e.g., numbers of distinctive features). Thus, the double
dissociation does reveal something important about the underlying organization of the
system, but this organization does not correspond directly to the empirically manipulated
stimulus dimension (concreteness).

The above four points illustrate ways in which a distributed connectionist approach has
provided new insights both normal and impaired word reading. It must be acknowledged,
however, that the existing implemented models have a number of basic limitations that
ultimately prevent them from collectively constituting a comprehensive account of the
domain. These limitations stem largely from the fact that all of them have very restricted
temporal behavior: Single static monosyllabic words are presented as input, and a single,
static semantic, phonological, or both patterns are generated as output. Naturalistic reading
is, of course, a far more fluid and temporally complex activity, involving sequences of
attentional shifts and eye movements over lines of text as input, sequences of articulatory
gestures as spoken output, and interactions among multiple levels of linguistic structure in
both comprehension and production (see Just & Carpenter, 1987).

The current article presents a simulation which can be seen as a first step towards
incorporating some of these complexities into connectionist models of reading. The model
is still applied only to single monosyllabic words, but this limitation reflects more the
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choice of training corpus than any intrinsic limitation of the architecture. The network
generates sequences of phonemes as output in response to letter strings as input. Critically,
it maintains a focus of attention within the word as it is being pronounced; this focus is
used to refixate the input string when the network encounters difficulty in generating a
pronunciation. The model learned to pronounce virtually all of the 2998-word training
corpus, and pronounced nonwords as well as skilled readers. It also exhibited a length
effect and the standard interaction of word frequency and spelling-sound consistency if the
number of fixations it makes in pronouncing a word was taken to reflect its naming
latency.

Consideration of sequential processing for both visual input and articulatory output is
critical for a full account of a number of empirical phenomena, particularly those related
to the effects of the length of the input string. The current model is applied only to a small
subset of these effects, relating to differential effects for words versus nonwords (Weekes,
1997), and the exaggerated length effect of letter-by-letter readers and its interaction with
lexical variables (Behrmann et al., 1998). In the latter case, the empirical adequacy of the
model is somewhat limited in that the magnitude of the length effects, relative to normal
performance, are much smaller than for most letter-by-letter readers. Nonetheless, the
model illustrates how letter-by-letter reading can be interpreted as reflecting the operation
of the normal reading system following peripheral damage (see Behrmann, Plaut, &
Nelson, 1998, for discussion).

Given that the current model is, in many respects, very different from previous models
(Plaut et al., 1996; Seidenberg & McClelland, 1989), it is important to consider how they
are related. With regard to the orthographic input, the models are relatively similar in that
all of them are presented with an entire word as input. The current model differs in the use
of position-specific letter units and a refixation mechanism. However, most words are
processed in a single fixation in skilled performance, which corresponds to the static
presentation of input in the previous models. In this way, even though the current model
produces a single phoneme at a time, the fact that it does so based on the entire
orthographic input at every step makes it fully consistent with evidence suggesting a
considerable degree of parallel visual processing during word reading (see, e.g., Reichle
et al., 1998). This property also distinguishes it from other sequential models in which the
orthographic input is shifted leftward one letter each time a phoneme is generated (e.g.,
Bullinaria, 1997; Sejnowski & Rosenberg, 1987; see Christiansen & Chater, this issue, for
discussion). In fact, these models are very similar to the current model when it is refixating
every grapheme.

The more substantial difference between the model and the previous parallel ones
concerns the generation of phonological output. The previous models generated a static
representation of the pronunciation of an entire (monosyllabic) word, whereas the current
model generates a pronunciation phoneme-by-phoneme. An intermediate case would be a
model that derived a representation of an entire word (or at least a syllable) and then used
this representation as input to generate sequential articulatory output. Plaut and Kello
(1999) describe such a system in the context of modeling phonological development,
although the phonological representation is generated from acoustic rather than ortho-
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graphic input. A reading model which adopted the current model’s treatment of ortho-
graphic input but Plaut and Kello’s treatment of articulatory output would combine the
strengths of the current sequential model and previous parallel models, and should be able
to model effects on naming latencies, including those relating to orthographic length,
directly in its temporal behavior. While such an approach appears promising for address-
ing the full range of empirical phenomena in normal and impaired word reading, it
remains for future work to bring it to fruition.
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NOTES

1. In their reply to Seidenberg and Plaut (1998), Balota and Spieler (1998) question whether length effects fall
outside the scope of the models given that Plaut et al. (1996, p. 85) actually demonstrated a small but
reliable effect of length on the settling times of their attractor model. However, the fact that the model shows
some sensitivity to length does not entail that it should be expected to account for all or even most of the
effects of length on performance; the underlying theory may still ascribe length effects to other (unimple-
mented) parts of the reading system.

2. The encoding of words and nonwords as sequences of phonemes was based on the phonological represen-
tation employed by Plaut and McClelland (1993), which differs slightly from that used by Plaut et al.
(1996).

3. Given the composition of the training corpus and all possible refixations, 62 of the letter units would never
be activated during training. Therefore, to reduce the computational demands of the simulation slightly, all
6200 outgoing connections from these units were removed, leaving an actual total of 39,745 connections
in the network.

4. A more empirically accurate positioning would have placed the string so that fixation falls at or just to the
left of the center of the word, corresponding to the “optimal” or “convenient” viewing position (see
O’Regan, 1981). This distinction has no functional consequences for the current model, however, as it does
not incorporate variation in visual acuity with eccentricity.

5. If the network fails on the first grapheme of a string, or immediately after refixating, the target for the
position units is used during training as the location of the next fixation; during testing, the most active
position unit is used. Also note that the network’s rightward saccades are different than the regressive
(leftward) saccades that subjects sometimes make when encountering difficult text (see Just & Carpenter,
1987). The current network cannot make regressive saccades.

6. There is emerging evidence that subjects can initiate their articulation prior to computing the entire
pronunciation of a word (Kawamoto, Kello, Jones, & Bame, 1998). Note, however, that the most difficult
aspect of mapping orthography to phonology in English relates to inconsistency in vowel pronunciations,
and the fixation measure used in the current simulation is sufficiently sensitive to reflect this property.

7. Given that the network contains no semantic representations, it cannot be used to account for the effects of
imageability on LBL reading, nor the relatively preserved lexical decision and semantic categorization
performance of these patients.
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