| LEARNING AND REPRSENTATION | | |
M 1/13 | 1. Introduction |
NIH Brain Facts (chapter 1)
| |
W 1/15 | 2. Neurons and Membranes |
McCulloch and Pitts (1943)
| HW 1 out |
M 1/20 | Martin Luther King Day (no class) | | |
W 1/22 | 3. Spikes and Cables | Trappenberg Ch 1.1-2.2 (C) | Matlab tutorial Wean 5201 4:30-5:30 |
M 1/27 | 4. Synapse and Neural Net | Trappenberg Ch 3.1 | |
W 1/29 | 5. Neuron models and Perceptron |
F. Rosenblatt - Perceptron.
| HW 2 out, HW 1 in |
M 2/3 | 6. Synaptic plasticity | Trappenberg Ch 4
Abbott and Nelson (2000)
| |
W 2/5 | 7. Hebbian Learning | Trappenberg Ch 4, HPK Ch 8
Oja (1982)
| |
M 2/10 | 8. Features and Convolutions | HPK Ch 8 | |
W 2/12 | 9. Computaitonal Maps | HPK Ch 9
Kohonen (1982)
| HW 3 out. HW 2 in; |
M 2/17 | 10. Source Separation |
Foldiak (1990)
Olshausen and Field (1997)
(2004)
| |
W 2/19 | 11. Belief Net |
Hinton and Salahutdinov (2006)
| |
M 2/24 | 12. Belief Net |
Hinton and Salahutdinov (2006)
|
W 2/26 | 13. Review | | |
M 3/2 | 14. Midterm | | |
| ASSOCIATION and INTERACTION | | |
W 3/4 | 15. Recurrent and Attractor network |
Hopfield and Tank (1986)
| HW 3 in. HW 4 out |
M 3/9 | Midterm grade, Spring break | | |
W 3/11 | Spring break | | |
M 3/16 | 16. Zoom Introduction No class |
| |
W 3/18 | 17.Recurrent Circuits |
Marr and Poggio (1976)
Samonds et al. (2013)
| |
M 3/23 | 18. Markov Bayesian Network |
Lee (1995)
Kersten and Yuille (2003)
| |
W 3/25 | 19. Probabilistic Bayesian Inference |
Weiss et al. (2002).
Ma et al. (2006)
| |
M 3/30 | 20. Neural network |
Fukushima (1988),
Krizhevsky et al. (2012)
| HW 4 in. HW 5 out |
W 4/1 | 21. Convolutional Neural Networks |
Zeiler and Fergus (2013)
LeCun, Bengio and Hinton (2015)
| |
M 4/6 | 22. Deep Network and the Brain |
Yamins and DiCarlo (2016)
Lillicrap et al. (2016)
| |
W 4/8 | 23. Biological Plausible Learning |
Arrout et al. (2019),
Guerguiev et al. (2017)
| |
M 4/13 | 24. Hierarchical Feedback |
Mumford (1992)
Rao and Ballard (1998)
Lee and Mumford (2003)
| |
W 4/15 | 25. Kalman Filter |
Welch and Bishop (2001)
Rhudy et al. (2017)
| HW 5 in. HW 6 out. |
M 4/20 | 26. Motor System and BCI |
Sheahan et al (2016),
Sadtler et al (2014),
Oby et al (2018)
| |
W 4/22 | 27. Predictive Learning |
Lotter et al (2016),
Colah (2015)
Rao (2015)
| |
M 4/27 | 28. Reinforcement Learning |
Niv (2009),
Montague et al. (1996)
| |
W 4/29 | 29. Reinforcement Learning |
Gadagkar et al. (2016)
| HW 6 in |
F 5/1 | 30. Project Presentation | | journal club time |
F 5/8 | 31. Final Exam | | 8:30-11:30 a.m. |
R 5/14 | Final Grade due 4 p.m. for Graduates | | |
T 5/19 | Final Grade due 4 p.m. | | |