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Abstract. This paper presents a computational model that segments
images based on the textural properties of object surfaces. The proposed
Coupled-Membrane model applies the weak membrane approach to an im-
age Wl(O'

y), 

derived from the power responses of a family of self-
similar quadrature Gabor wavelets. While segmentation breaks are allowed
in x and y only, coupling is introduced to in all 4 dimensions. The result-
ing spatial and spectral diffusion prevents minor variations in local tex-
tures from producing segmentation boundaries. Experiments showed that
the model is adequate in segmenting a class of synthetic and natural texture
images.

1 Introduction

This paper presents a computational model that segments images based on the textural
properties of object surfaces. The proposed model distinguishes itself from the previous
models in texture segmentation (Turner 1986 , Voorhees and Poggio 1988 , Malik and
Perona 1989 , Fogel and Sagi 1989 , Bovik, Clark and Geisler 1990 , Reed and Wechsler
1990 , Geman et a11990) in the following way.

Previous models have started with the extraction from the image lex

, y) 

of some set of
texture features which can be viewed as forming auxiliary texture images 

, y). 

Then
applying either region growing, boundary detection , or (in the single paper (Geman et al
1990)) a membrane-like method combining these two , a segmentation is derived. In our
model , the texture features are the power responses of quadrature Gabor filters. These
filters form a continuous family depending on two variables and can be derived like
wavelets from dilation and rotation of a single filter. Thus we think of the texture features
as combining into a single image Wl(O' , 0 , x

, y) 

depending on 4 continuous variables.
We apply the weak membrane approach to segmenting this signal , in which coupling is
introduced in all 4 dimensions , but breaks are allowed in x and y only. We call this the
Coupled- Membrane model.

Why is this model useful? Previous methods generally deal only with textures that are
statistically stationary (i.e. approximately translationally invariant) and not too granular
(e.g. with widely spaced textons , or large local variations). But natural textures do not
satisfy either: Firstly, they show considerable texture ' gradients , in which the power dis-
tribution of the texture among various channels changes slowly but systematically over
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a region , due for instance to the perspective affine distortioJ1. imposed on surface features

of solid objects in a 3-dimensional world , and to the deformation caused by the non-
planarity of the objects ' body shapes. J. J. Gibson (Gibson 1979) has emphasized how

these texture gradients are ubiquitous clues to the 3D structure of the world. Secondly,

they show random local fluctuations , due to the stochasticity in their generation pro-

cesses , which are often quite large (compare the four subimages in 'Mosaic ' below , taken

from (Brodatz 1966)). The inter-membrane couplings unique to our Coupled-Membrane

model allow interaction between neighboring components in the spectral vector and pre-
vent minor local variations from producing segmentation boundaries. At the same time
they introduce explicitly the appropriate metric between texture channels so that a shift
in the peak of the power spectrum to a nearby frequency or orientation is treated differ-
ently from a shift to a distant frequency or orientation. As we shall see , this allows us to

begin to solve these problems for natural textures.
This paper is organized as follows: first , we will discuss how texture is represented in

our model and how texture disparity can be computed from this representation. Then
we will discuss the Coupled-Membrane model for texture segmentation in its continuous
formulation and discrete approximation. Finally, we will present our experimental results.

2 Gabor-Wavelet Representation of Texture

Texture segmentation requires a description of local texture properties in an image. Pre-
vious methods include texton statistics (Voorhees and Poggio 1988), DOG filters (Malik
and Perona 1989), windowed Fourier transform or Gabor filtering (Turner 1986 , Fogel

and Sagi 1989, Bovik , Clark and Geisler 1990 , Reed and Wechsler 1990). While the first
two of these methods emphasize feature detection , the Gabor-Fourier method is based
on power spectrum analysis or autocorrelation.

In our model , the texture features are the power responses of quadrature Gabor filters.

These filters form a continuous family depending on two variables 
, 0 and can be derived

like wavelets from dilation and rotation of a single filter. We call this Gabor- Wavelet

Representation. Physiological evidence suggests that the visual cortex is employing a

similar representation for encoding visual information. We impose the constraints derived
from physiological data (Pollen et al. 1989, Daugman 1985) and obtain the following
family of self-similar Gabor filters centered at (x = 0 = 0) in the spatial domain. (For
details, readers are referred to our technical report (Lee , et aI1991).

G(u 0 x y) 
f:o (4(",cos9+ysin9)' +(-",sin9+ycos9)' . e i(acos9",+asin9y)

, " 

5011"

where is the radial frequency, and is the angular orientation of the filter.
In a manner completely analogous to the generation of wavelet bases from a single

basic wavelet , this whole family of Gabor filters c.an be generated by rotation and dilation
from the following single Gabor filter (as shown in figure 1):
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, y) 
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"" 

(2)

Self-similar Gabor filters from this family serve both as band-pass filters and multi-
scale matched filters , producing a representational scheme that unifies power-spectrum
analysis and feature detection.

The convolution of this family of filters with the image produces a single image

WI(u , 0 , x

, y) 

which is the normalized power modulus of the filter ensemble as follows

(1)
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Fig. 1. Rotated and Dilated quadrature Gabor filters

WI(u

y) 

~1(0" 0 *I)(x y)12 (3)

where

(0" I)(xo, Yo
11 

o(x Xo, Y )I(x , y)dxdy (4)

and

J J 1(0"
I)(x , y)12 dud6 (5)

Since each Gabor filter has a Gaussian spread in its frequency plane , local power
spectrum of an image can be sampled in a parsimonious and discrete manner. In our
implementation , we use Gabor wavelets with a sampling interval of I-octave in frequency
and 22. 50 in orientation to pave the spatial frequency plane , as shown in figure 2.

Fig. 2. Tiling of Spatial Frequency Plane by Gabor Wavelets
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3 Texture Disparity and Spectral Proximity

Using this sampling scheme , we construct a spectral signature vector of 24 components
(3 frequencies and 8 orientations) at each point 

, y) 

in the spatial domain. This vector

is then normalized , i.e. divided by to discount the luminance effect. As a result , each

particular texture corresponds to a unit vector within this unit 24-dimensional ball. we

advocate the use of the L2 norm as the appropriate metric to compute the dista,pce

between two spectral signature vectors for the following reason.

The L2 norm is superior to the Loo norm in computing texture disparity because it
does not discard the proximity information between the spectral signatures of two texture
patterns. When a Loo norm is computed , components in a spectral vector are treated
as independent and their spectral proximity relationships are ignored. For instance

, the

Loo norm induced by rotating a texture by 
300 will be the same as that induced by

900 rotational shift. This is true independent of the sampling scheme. Although the
L2 norm behaves the same way as the 

Loo norm in a minimal sampling scheme with

orthogonal bases , its value decreases for spectrally proximal textures when the bases
become increasingly nonorthogonal in an oversampling scheme. In this case

, the L2 norm

induced by a 300 rotation is smaller than that induced by a 
900 rotation as illustrated

in figure 3.

Because the parsimonious scheme we used is not straightly a minimal one with or-

thogonal bases , it is benefited from the use the L2 norm. The visual cortex , however

oversamples the power spectrum by at least two or three times as much in both 
and

() dimensions (Webster & De Valois 1985 , Silverman et al1989, Rubel and Wiesel 1977).

The proximity effect due to the 
L2 norm would therefore be even more pronounced.

The parsimonious scheme saves computational effort , but also decreases the proxim-

ity effect. To compensate , we introduce smoothing in the spectral domain by coupling
together the spectrally proximal components in the spectral vector as will be discussed

in the next section.
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4 Energy Functional for Texture Segmentation

The Coupled-Membrane model we developed for texture segmentation is a generalization
ofthe Weak-Membrane Model (Blake and Zisserman 1987 , Marroquin 1984 , and Mumford
and Shah 1985) or equivalently the Markov Random Field model (Geman and Geman
1984). While the Weak-Membrane deals with intensity values in a 2-D image plane , our
model deals with spectral responses in a 4-D spatial-spectral domain. The continuous
formulation of the model is defined as follows

Given the spectral signature image WI(u

y), 

we are to find a piece-wise con-

tinuous functional feu, 0 , x

, y) 

that is its smooth estimation, with its texture noise and
variations removed. Within a texture region feu, 0 , x

, y) 

is continuous. Discontinuity in

feu , 0 , x

, y) 

is allowed at the boundary in spatial domain between two texture regions.
These objectives are captured by following energy functional that is to be minimized

E(f, B) 

li .Is IIf(u

y) 

WI(u y)112 dlogudOdxdy

of of of of 

JR- is ((/u o(logu) ) + (/8 + (A ) + (A logu dOdxdy

+a 

L ds

where Rand are the finite 2-dimensional spatial and spectral domains respectively;
boundaries is a finite set of piece-wise 01 contours which meet oR and meet
each other only at their endpoints. The contours of B cut R into a a finite set of disjoint
regions R1, 

...

, Rn.. the connected components ofR-B. The integration over S is done with
(dlogu)dO = 

",.d8 because the power spectrum is represented in log-polar form.
The first term ofthe energy functionalforces the smoothed spectral response feu , 0 , x

, y)

to be as close as possible to the measured spectral response WI(u , O

y). 

The second

term asks the spectral response to be as smooth as possible in both spatial and spectral
domains. These two potentially antagonistic demands are to arrive at a compromise that
is determined by the A /u and /8.

Since feu, 0 , x

, yj 

is required to be smooth only within each 14 but not across B , the
third integral term is needed to prevent breaks from appearing everywhere. This term
imposes a penalty against each break and provides the binding force within a region.

5 Computer Implementation

To solve a functional minimization problem computationally, the energy functional is
discretized as follows

E(f, B) L:(f(i

/)-

WI(i /))2
+/; L:(J(i /)-f(i I+1))21 i

+/~ 

L:(f(i /)-f(i k+1 /))2

+A2 L: (J(i

j, 

, I) f(i + 1

j, 

, 1)F(1- v(i + ~,

j))
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+.:x2 (f(i j, k 1) - f(i + 1 , lW(1- h(i

+~))

E(v(i 

j) 

h(i

+ ~))

where i , j, k , I are indexes for x , log respectively in the 4-dimensional spatial-spectral
sampling lattice. v and h are vertical and horizontal breaks between the lattice points in
the spatial domain.

Figure 4 illustrates the couplings among the nodes in the 4-D sampling lattice: Each
membrane corresponds to WI(k 1) for a frequency 1 , and an orientation k. Within each

membrane , each node is coupled to the nearest 4 neighboring nodes. At each spatial
location , a membrane is coupled with 4 other membranes which are its nearest spectral
neighbors.

As the segmentation-diffusion process unfolds , spectral response is allowed to diffuse
from one node to its 4 spatial and 4 spectral nearest neighbors. Breaks , however , can only
occur in the spatial domain. When the L2 norm of the evolving membranes exceeds the
texture disparity threshold Vf at a spatial location , a break will occur at that location
to cut across all the membranes.

Given a set of values for parameters .:x 'Yu, 'Y8, and an optimal compromise among
the three terms in the energy functional produces a set of segmentation boundaries and
smoothed spectral responses. Because the energy functional has many local minima due
to its nonconvexity, the global optimal compromise can be obtained using special math-
ematical programming methods. This paper presents results obtained using a stochastic
method called Simulated Annealing (Kirkpatrick 1983), and a deterministic method called
Graduated Non-Convexity (Blake and Zeisserman 1987). We implemented both two meth-
ods on DEC5000 workstation and on a massively parallel computer called MASPAR.

6 Experimental Results

A class of texture images , 256 x 256 pixels in size , are used to test the model. Percep-
tual boundaries in these images are defined primarily by difference in textures , and not
by luminance contrast. The segmentation-diffusion is performed on a 64 x 64 spatial
sampling grid. We use a simple annealing schedule schedule for Simulated Annealing:
Tn 985Tn- at each temperature step, with a starting temperature of 25. It takes
about 24 hours on DEC 5000 or 6 hours on MASPAR to process each image. For GNC
the error resolution fj needs to be 2-12 to ensure the solution is close to the optimal one.
It takes 140 hours on DEC 5000 or 7 hours on MASPAR. Despite the fast annealing
schedule , the Simulated Annealing performs reasonably well. The answer provided by
GNC , however , is closer to the global minimum. These algorithms have also been imple-
mented in 1-D so that their solutions can be compared with the exact optimal solution
yielded by dynamic programming.

Three images are presented here as illustrations: ' Vase ' (figure 5), ' Mondrian ' (figure
7a), and 'Mosaic ' (figure 7b). ' Vase ' is used to demonstrate the model's tolerance to
texture 'gradient' due to inter-membrane coupling. When this coupling is disabled , the
segmentation is not perceptually valid (figure 5d). The initial response and the final
response of the filters to ' Vase ' (figure 6) demonstrate the diffusion effect in both the
spatial and spectral domains.

Mondrian ' and ' Mosaic' both demonstrate that the model's ability in segmenting
synthetic and natural textures while withstanding significant texture noise , and local
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Fig. 5. (a) 'Vase and its segmentations: (b) Simulated Annealing result

with = 0. oX = 6 , te = 2 ,er = 4; (c) GNC result with 

= .

oX = 6 ,e = 2 ,er = 4;

(d) GNC with = 1.25 oX = 6 ,e ,er = 0 i.e. without inter-membrane coupling.

Fig. 6. (a) Initial filter response map for 'Vase . (b) Final filter response map at the end of the

segmentation-diffusion process (figure 5c). Each small square is the response map of a particular
filter to the image. The maps are arranged in frequency rows (three frequencies) and orientation

columns (eight orientations).

variation in scale and orientation. The initial and final response maps of 'Mondrian

(figure 8) underscore the cooperative effect of the diffusion and segmentation processes
in producing sharp texture boundary from fuzzy input.

The parameter values used for the segmentation-diffusion process are shown in the

figure caption. For the series of images we tested , the values needed to produce a seg-

mentation similar to our perception are fairly close together.

7 Discussion:

The Coupled-Membrane Model with the Gabor-wavelet representation has produced

promising results in the segmentation of a class of texture images. It combines the several
sequential steps of filtering, smoothing and boundary detection in the previous texture
segmentation models into a coherent and unified framework with a simple and elegant

formalism. The model requires only three parameters (as I" and 18 are related) and is

more parsimonious in many aspects than the model Geman et al (1991) proposed. The

issue of spectral proximity, ignored by the previous models , is addressed in our model by

the introduction of spectral smoothing and the use of the 
L2 norm with oversampling.

The model needs to be further developed to address to a wider class of natural images.
In the form presented in this paper , the model has difficulty at the boundary between
non-texture regions. This problem can be solved by incorporating into the model the
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Fig. 7. (a) ' Mondrian ' and its segmentation. Parameters: 01 = 0. = 6 , "'f6 = 2 "'fa = 4. (b)
Mosaic ' and its segmentation. Parameters: 01 = 0. = 12 , "'f6 = 2 "'fa = 4. Top segmentation:

SA. Bottom segmentation: GNC. 

Fig. 8. ( a) Initial filter response map for ' Mondrian . (b) Final filter response map at the end
of the segmentation-diffusion process.

luminance edge information derived from the same Gabor-Wavelet representation , and
by modifying the domain of integration in the energy functional. This effort will be
reported in another paper.

A similar approach can be taken to the problem of speech segmentation: speech seg-

mentation is presently done with either Hidden Markov models or time-warping. We
propose that segmentation of time by a Coupled-String model applied to the power spec-
trum of speech , with couplings between adjacent values of time and frequency, provides
a third approach. The Coupled-String model is amenable to dynamic programming and
hence fast , and will be effective for all phonemes without the need to model each phoneme
in details.

The model uses neurophysiological components as its processing elements, and can
be implemented in a locally connected parallel network. There is a strong possibility that
it can be linked to the computational processes in the visual cortex. For instance , the
segmentation process is related to boundary perception , while the diffusion process can
be linked to texture grouping or diffusion phenomenon in psychology. Our work suggests
that when cortical complex cells are coupled in a particular fashion , a successive gradient
descent type of algorithms can solve a class of image segmentation problems that are
essential to visual perception.
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