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We propose using the statistical measurement of the sample skewness
of the distribution of mean firing rates of a tuning curve to quantify
sharpness of tuning. For some features, like binocular disparity, tuning
curves are best described by relatively complex and sometimes diverse
functions, making it difficult to quantify sharpness with a single func-
tion and parameter. Skewness provides a robust nonparametric measure
of tuning curve sharpness that is invariant with respect to the mean and
variance of the tuning curve and is straightforward to apply to a wide
range of tuning, including simple orientation tuning curves and complex
object tuning curves that often cannot even be described parametrically.
Because skewness does not depend on a specific model or function of
tuning, it is especially appealing to cases of sharpening where recurrent
interactions among neurons produce sharper tuning curves that deviate in
a complex manner from the feedforward function of tuning. Since tuning
curves for all neurons are not typically well described by a single para-
metric function, this model independence additionally allows skewness
to be applied to all recorded neurons, maximizing the statistical power of
a set of data. We also compare skewness with other nonparametric mea-
sures of tuning curve sharpness and selectivity. Compared to these other
nonparametric measures tested, skewness is best used for capturing the

Brian Potetz is now at Google, Los Angeles, CA.

Neural Computation 26, 860–906 (2014) c© 2014 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00582



Sample Skewness as a Statistical Measurement 861

sharpness of multimodal tuning curves defined by narrow peaks (max-
imum) and broad valleys (minima). Finally, we provide a more formal
definition of sharpness using a shape-based information gain measure
and derive and show that skewness is correlated with this definition.

1 Introduction

Since Adrian and Zotterman (1926) discovered that the number of action
potentials recorded from a muscle nerve fiber varied with the amount of
force applied to the muscle, neurophysiologists have been characterizing
neurons throughout the nervous system by the changes in their mean fir-
ing rates of action potentials to changes in sensory input or motor output
characteristics. For many neurons, their firing rates vary for a particular pa-
rameter or feature of the sensory input or motor output and fire maximally
for one particular value of that feature. That one value is expressed as the
preferred value of that feature for a neuron, and a plot of mean firing rates
across all possible values of that feature is known as a tuning curve.

Tuning curves throughout the brain can be represented by mathematical
functions. Most tuning curves, such as orientation tuning in primary visual
cortex (V1) and direction of motion tuning in area MT, are represented
by a gaussian function (Henry, Bishop, Tupper, & Dreher, 1973; DeAngelis
& Uka, 2003). For neurons in motor cortex, tuning curves of direction of
movement are fit with a cosine function to capture the shape of the peak
(Georgopoulos, Kalaska, Caminiti, & Massey, 1982). Finally, neurons tuned
for horizontal binocular disparity in visual areas have disparity tuning
curves that are best described by Gabor functions (Ohzawa, DeAngelis,
& Freeman, 1990; Hinkle & Connor, 2001; Prince, Pointon, Cumming, &
Parker, 2002; DeAngelis & Uka, 2003).

Neurophysiologists also often characterize the sharpness of these tun-
ing curves. Sharpness is generally defined as whether a tuning curve is
broad or narrow, with a narrower tuning curve being described as sharper.
The motivation for characterizing sharpness is based on the presumption
that a neuron with a sharper tuning curve describes the stimulus with
greater specificity and precision than a neuron with a broader tuning curve.
Changes in sharpness are frequently observed for tuning curves of many
features, especially for the neurons involved in processing incoming sen-
sory information. For example, studies in the visual and auditory systems
find that tuning curves in general become sharper as you progress from cor-
tical input layers to output layers (Blasdel & Fitzpatrick, 1984; Fitzpatrick,
Batra, Stanford, & Kuwada, 1997). Some tuning curves for individual neu-
rons for several different visual and auditory features sharpen over time
(Ringach, Hawken, & Shapley, 1997; Suga, Zhang, & Yan, 1997; Bredfeldt
& Ringach, 2002; Menz & Freeman, 2003; Samonds, Potetz, & Lee, 2009;
Samonds, Potetz, Tyler, & Lee, 2013). Sharpness can also increase with in-
creasing stimulus size (Chen, Dan, & Li, 2005; Xing, Shapley, Hawken, &
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Ringach, 2005; Samonds et al., 2013). In addition, increases in attention and
training can sharpen tuning curves in higher visual areas and are correlated
with improved behavioral performance (Spitzer, Desimone, & Moran, 1988;
Freedman, Riesenhuber, Poggio, & Miller, 2006). Finally, recent experiments
have revealed that suppressing a particular class of inhibitory interneurons
leads to broader orientation tuning and diminished performance in an ori-
entation discrimination task, providing even stronger evidence that tuning
sharpness is behaviorally relevant (Lee et al., 2012).

Recently we found that disparity tuning sharpened over time, sharp-
ened with increasing stimulus size, and had decreased sharpness for binoc-
ular anticorrelation stimulation in the macaque primary visual cortex and
showed that recurrent interactions among disparity-tuned neurons could
account for the changes in sharpness (Samonds et al., 2013). Sharpness has
traditionally been quantified with bandwidth measures of the tuning curve
(Albright, 1984; Bredfeldt & Ringach, 2002). More recent studies fit the data
to functions and define sharpness by one of the parameters of the func-
tion. The sigma term or variance in the gaussian function closely resembles
bandwidth (Henry et al., 1973) and frequency terms in sinusoidal or Gabor
functions can capture narrowing tuning curve peaks (Menz & Freeman,
2003). Unlike gaussian functions used to describe orientation tuning curves
for V1 neurons, Gabor functions of disparity tuning introduce some diffi-
culties in quantifying sharpness. Disparity tuning curves can have multiple
peaks and valleys, so if we define sharper disparity tuning as conveying
more information and precision about disparity, then greater sharpness
is not necessarily limited to a narrowing of a peak or best described by
an increase in frequency. Characteristics of increased sharpness of dispar-
ity tuning include narrowing of the peak around the preferred disparity,
broadening of valleys away from the preferred disparity, and suppression
of secondary peaks (see Figure 1A; Samonds et al., 2009, 2013). Parameters
of Gabor functions do not adequately capture all of this behavior because
the observed function of disparity is actually deviating from a Gabor with
increasing sharpness.

A simpler approach has been to use nonparametric methods to quantify
the sharpness and selectivity for complex tuning curves, since these mea-
sures do not require modeling tuning curves for a diverse set of neurons
with a single function (Ringach et al., 1997; Rolls & Tovee, 1995; Moody,
Wise, di Pellegrino, & Zipser, 1998; Lehky, Sejnowski, & Desimone, 2005;
Freedman et al., 2006). We propose using the nonparametric standard sta-
tistical measurement of the sample skewness of the distribution of mean
firing rates over disparity to quantify sharpness. In this letter, we demon-
strate how skewness quantitatively captures the characteristics of disparity
tuning sharpening described in Figure 1A and sharpness of other features
that have simple and complex tuning functions. We also illustrate how
increases in skewness are related to changes in parameters for Gabor func-
tions typically used to describe disparity tuning and difference-of-gaussians
functions that have been used to capture changes in sharpness. We discuss
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Figure 1: An example of the sharpening of disparity tuning and deviation
from a Gabor function observed in V1 neurons (Samonds et al., 2009, 2013).
(A) Tuning measured later in the response (black data and difference-of-
gaussians fit, 450–850 ms from stimulus onset) had narrower peaks, broader
valleys, and suppressed secondary peaks compared to disparity tuning mea-
sured early in the response (gray data and Gabor fit, 150–250 ms from stimulus
onset). (B) A Gabor function is commonly used to describe disparity tuning
curves and is a combination of a sinusoidal component with a gaussian en-
velope. (C) A difference-of-gaussians function is commonly used to describe
tuning curves that evolve from recurrent interactions among a population of
tuned neurons and combines two gaussians with opposite sign.
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when and why skewness is better suited for analyzing sharpness than these
parametric approaches. We also show how increases in skewness are related
to other statistical measurements and when and why skewness is a better
measure. Finally, we formulate a clear and quantitative definition of sharp-
ness with a shape-based information gain measure of estimating features
from a tuning curve and demonstrate that skewness is highly correlated
to this measure when applied to a variety of potential tuning curves. All
of these qualities of skewness make it an ideal measure for quantifying
the sharpness of tuning for a wide range of complex tuning functions for
neurons throughout the nervous system.

2 Materials and Methods

2.1 Neurophysiological and Model Data. The disparity tuning data
for this study were robust tuning curves taken from Samonds et al. (2013),
which used surgical and recording procedures that were approved by the
Institutional Animal Care and Use Committee of Carnegie Mellon Univer-
sity and are in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. The data were collected simulta-
neously with data reported in two previous articles where the details about
the specific methods can be found (Samonds et al., 2009; Samonds, Potetz,
& Lee, 2012). The first recording procedure used for two (male and female)
rhesus monkeys (Macaca mulatta) used two to eight tungsten-in-epoxy and
tungsten-in-glass microelectrodes in a chamber overlying the operculum
of V1 (Samonds et al., 2009). The second recording procedure used on the
third monkey (male) used a chronically implanted 10 × 10 Utah Intracorti-
cal Array (400-mu m spacing) inserted to a depth of 1 mm in V1 (Samonds
et al., 2012). Dynamic random dot stereograms (DRDS) with 25% density,
a 12 Hz refresh rate, and disparities between corresponding dots of ±0.94,
±0.658, ±0.282, ±0.188, ±0.094, and 0 degrees (10–60 repeats of each dis-
parity) were presented for 1 second within a 3.5 degree aperture to fixating
monkeys to measure disparity tuning over time.

A disparity tuning curve of a representative example model neuron was
also used from Samonds et al. (2013), where details about the model can be
found. In brief, the neuronal network model had a single layer of dispar-
ity energy model neurons (Ohzawa et al., 1990) with recurrent connections
among binocular disparity-tuned neurons that represented what has been
inferred based on cross-correlation results (Menz & Freeman, 2003; Sa-
monds et al., 2009). The feedforward disparity tuning curve can be shown
to be approximately Gabor as a function of disparity. Within a spatial lo-
cation, the weight of recurrent connections between neurons was chosen
to be proportional to the Pearson correlation between the feedforward tun-
ing curves of those two neurons, but using thresholded tuning curves to
approximate the reduced and sparse response to natural scenes. All neu-
rons within a spatial location were interconnected. Across spatial locations,
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neurons were connected with positive weighting set by a spatial gaussian
only if they had matching disparity and spatial frequency preferences. The
input response for the model neuron is the tuning curve based on the dis-
parity energy model (Ohzawa et al., 1990), and the steady-state response is
the tuning curve measured after applying several iterations of the recurrent
inputs using a standard dynamic neural field model.

The orientation tuning data for this study were collected from two (male
and female) rhesus monkeys using the 10 × 10 Utah array method de-
scribed above (same male monkey) and a semichronic recording chamber
(Salazar, Dotson, Bressler, & Gray, 2012) implanted overlying the opercu-
lum of the V1/V2, which was approved by the Institutional Animal Care
and Use Committee of Carnegie Mellon University and in accordance with
the National Institutes of Health Guide for the Care and Use of Laboratory
Animals. The chamber has 32 independently movable tungsten-in-glass mi-
croelectrodes. Drifting sinusoidal gratings with 100% Michelson contrast,
6.25 Hz temporal frequency, 1.3 cycles per degree spatial frequency, and
orientation increments of 22.5 degrees over 360 degrees (covering the entire
range of orientation at both drift directions; 10–50 repeats of each orien-
tation) were presented for 1 second within a 4 degree aperture to fixating
monkeys to measure orientation tuning over time for V1 and V2 neurons.

The object tuning data analyzed in this study were from a previous
study by Freedman et al. (2006) and were collected from two female rhesus
monkeys using a recording chamber implanted over the inferior temporal
cortex (ITC) using procedures approved by the MIT Committee on Animal
Care guidelines and in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. Single-electrode record-
ings were made in ITC while randomly chosen pictures and photographs
were presented from the Corel Image Library. For training, monkeys had to
perform a delayed match-to-category task using a large set of morphed im-
ages based on three cat and three dog prototypes (Freedman, Riesenhuber,
Poggio, & Miller, 2001). Monkeys had to indicate whether two successively
presented stimuli were from the same cat or dog category. For record-
ings, and the tuning curves analyzed in this letter, 18 cat and dog stimuli
from each of six levels of cat/dog blends (100:0, 80:20, 60:40, 40:60, 20:80,
and 0:100) along the three morph lines that crossed the category boundary
(Freedman et al., 2006) were presented to monkeys for 0.6 seconds at seven
image-plane rotations relative to the trained orientation (0, 22.5, 45, 67.5,
90, 135, and 180 degrees) while monkeys performed a simple fixation task.
Tuning curves for the 18 images were computed within a 100 ms window
starting from 80 ms from stimulus onset from at least 10 repeats of each
image.

2.2 Parametric Methods. We fit two models to disparity tuning curves.
The first model is a Gabor function and has been shown to fit well to dis-
parity tuning curves measured from neurons recorded in V1 and other
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visual areas (Prince et al., 2002; Hinkle & Connor, 2001; DeAngelis & Uka,
2003) and the function is predicted by feedforward models of V1 disparity
tuning (Ohzawa et al., 1990). However, Gabor functions do not do well in
explaining the dynamic behavior of disparity tuning (Samonds et al., 2013).
The second model, a difference-of-gaussians (and similar difference mod-
els), does well at explaining the dynamics of orientation tuning (Somers,
Nelson, & Sur, 1995; Xing et al., 2005).

2.2.1 Gabor Function. The disparity energy model is composed of multi-
ple simple cell disparity tuning curves that are the sum of left and right eye
phase- or position-shifted two-dimensional Gabor filters convolved with a
stimulus. The output of these simple cells is then squared and summed to
produce a position-invariant disparity tuning curve for a complex cell. The
output of the feedforward disparity energy model predicts that disparity
tuning for this complex cell can be represented as a Gabor function (see
Figure 1B; Ohzawa et al., 1990; Prince et al., 2002):

x(d) = R + Ae
−(d−d0 )2

2σ2 cos
(

2π f (d − d0) + ϕ
π

180

)
, (2.1)

where d is disparity, R is the baseline firing rate, A is the amplitude, d0 is the
preferred disparity, σ is the standard deviation of the gaussian envelope,
f is the spatial frequency of the sinusoidal component, and ϕ is the phase
shift of the sinusoidal component. An example of a Gabor fit is illustrated
in Figure 1A (gray) for a disparity tuning curve measured soon after the
response onset following the start of visual stimulation.

2.2.2 Difference-of-Gaussians Function. Although a Gabor is the standard
function for describing disparity tuning over a diverse population of neu-
rons, alternative functions that are not constrained to a single frequency or
bandwidth component, and are therefore ideal for capturing more dynamic
behavior of tuning, such as those that occur in recurrent networks, are the
difference-of-gaussians or difference–of–von Mises functions (Somers, Nel-
son, & Sur, 1995; Xing et al., 2005). We fit our disparity tuning curves with
a simplified difference-of-gaussians function (see Figure 1C):

x(d) = R + Apeake
−(d−d0 )2

2σ2
peak − Avalleye

−(d−d0 )2

2σ2
valley , (2.2)

where d is disparity, R is the baseline firing rate, Apeak is the amplitude of the
positive gaussian component, d0 is the preferred disparity, σpeak is the stan-
dard deviation of the positive gaussian component, Avalley is the amplitude
of the negative gaussian component, and σvalley is the standard deviation of
the negative gaussian component. The positive gaussian component (peak)
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can capture the narrowing of the primary peak, while the negative gaussian
component (valley) can capture the broadening of the valleys as the dis-
parity tuning deviates from a Gabor function with stronger recurrent input
(see Figure 1A, black).

2.3 Statistical Measurements.

2.3.1 Sample Skewness. The statistical measurement of the sample skew-
ness is the third standardized moment of a distribution and can be com-
puted directly from the mean firing rates f (d) for each disparity d tested:

γ1 = μ3

σ 3 =
1
N

∑N
d=1 ( f (d) − f )3

(√
1
N

∑N
d=1 ( f (d) − f )2

)3 , (2.3)

where f̄ is the mean firing rate across all N disparities. Skewness represents
the direction in which a distribution is skewed (see Figures 2A and 2B, gray)
with respect to a normal distribution (see Figures 2A and 2B, black). This can
describe the sharpness of a tuning curve because greater skewness means
that most of the data are on one side of the mean, while smaller numbers
of the data are far away on the other side of the mean. With respect to
a disparity tuning curve, this means that most of the disparities, such as
nonpreferred disparities, have firing rates just below the mean, while only a
small number of the disparities, such as the preferred disparity, have firing
rates far above the mean (see Figures 2C and 2D). In addition, skewness
is invariant with respect to the mean and variance of the tuning curve, so
changes in skewness cannot be attributed to changes in the baseline firing
rate or the amplitude of the tuning curve (difference between the maximum
and minimum) over time.

For large nonparametric sets of complex stimuli, the distributions of fir-
ing rates for neurons look similar to the example unimodal distributions
presented in Figures 2A and 2D, with distributions such as exponential or
gamma (Franco, Rolls, Aggelopoulos, & Jerez, 2007; Lehky, Kiani, Esteky,
& Tanaka, 2011). For parametric sets of stimuli such as disparity and ori-
entation, there are more complex bimodal distributions of firing rates. Like
our example tuning curve with a unimodal distribution of firing rates in
Figures 2C and 2D, skewness can capture the sharpness of these tuning
curves with bimodal distributions of firing rates. Indeed, skewness cap-
tures all the features of sharpness that we observe with disparity tuning
(see Figure 1A). When one or a few disparities have firing rates far above
the mean firing rate across the entire disparity tuning curve, skewness has
a high positive value. This happens with narrow positive peaks and broad
valleys (see Figure 2E, top two rows), and skewness will increase if positive
peaks become narrower or valleys become broader, or both. The peak of
the distribution of firing rates occurs below or to the left of the mean firing
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Figure 2: How tuning curve sharpness influences skewness. (A) Skewness is
positive when the peak of a probability distribution is below the mean and
extreme values of the distribution are skewed above the mean. (B) Skewness
is negative when the peak of a probability distribution is above the mean and
extreme values of the distribution are skewed below the mean. (C) Therefore, a
tuning curve with a very sharp peak (preferred feature) far above the mean firing
rate of the tuning curve (extreme value) and most parameters (nonpreferred
features) with firing rates below the mean firing rate of the tuning curve has
a high positive value of skewness. (D) The distribution of firing rates for the
tuning curve is spread out toward very high firing rates compared to the mean
firing rate of the tuning curve. (E) Illustrative examples to demonstrate how
features in a disparity tuning curve influence the skewness computation. In
the center column are tuning curves with samples of particular features; the
right column shows the distribution of firing rates for the corresponding tuning
curve.

rate, and the distribution is spread out for values above or to the right of
the mean. Skewness also increases if the response to secondary peaks is
reduced (see Figure 1A). When one or a few disparities have firing rates far
below the mean firing rate across the entire disparity tuning curve, skew-
ness has a large negative value. This happens with narrow negative peaks
and broad positive peaks (see Figure 2E, bottom two rows), and skewness
will decrease if negative peaks become narrower or positive peaks become
broader, or both. The peak of the distribution of firing rates occurs above or
to the right of the mean firing rate, and the distribution is spread out for val-
ues below or to the left of the mean. Skewness also becomes more negative
if the response to secondary negative peaks is reduced. If there are equal
numbers of disparities with responses equally above and below the mean
(e.g., sinusoidal function), skewness will be equal to zero (see Figure 2E,
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third and fourth rows). The distributions of firing rates are symmetric with
respect to the mean. Overall, skewness increases for tuned excitatory neu-
rons (positive preferred peak) and decreases for tuned inhibitory neurons
(negative preferred peak) for all the changes in sharpness that we observed
for disparity tuning (Samonds et al., 2009, 2013).

It is important to point out that skewness depends on the range over
which the tuning curve is sampled. If the tuning curve is sampled over
a wider range of stimuli that includes many baseline responses, then the
widths of peaks will be narrower relative to the range of the stimuli, so
measured skewness values will be stronger. Therefore, skewness measure-
ments should be compared only when the tuning curve is sampled in the
same manner (i.e., using the same set of stimuli or conditions).

2.3.2 Sample Kurtosis. The statistical measurement of the sample kurtosis
is the fourth standardized moment of a distribution and can be computed
directly from the mean firing rates f (d) for each disparity d tested,

β2 = μ4

σ 4 =
1
N

∑N
d=1 ( f (d) − f )4

(√
1
N

∑N
d=1 ( f (d) − f )2

)2 , (2.4)

where f̄ is the mean firing rate across all N disparities. Kurtosis measures
heavy tails or represents the peakedness of a distribution. It has been used
widely to describe the sparseness of responses among a population of neu-
rons (Olshausen & Field, 1996, 2004; Lewicki & Sejnowski, 2000; Willmore
& Tolhurst, 2001) and to characterize selectivity of tuning curves (Lehky
et al., 2005, 2011; Lehky & Sereno, 2007).

2.3.3 Circular Variance. Directional statistics are ideal for data based on
variables such as orientation because very different values of the variable
can have very similar representations (e.g., 1 and 359 degrees). One direc-
tional statistic that can describe the spread of data across a variable such
as orientation is the circular variance (V), which can be used to quantify
the bandwidth of orientation tuning curves (Ringach et al., 1997; Ringach,
Shapley, & Hawken, 2002):

V = 1 −
∣∣∑

k Rkei2θk
∣∣∑

k Rk
, (2.5)

where Rk is the response at orientation θk for angles 0 degrees ≤ θk < 180
degrees. If all responses are equal in a tuning curve (flat), the resultant
(right side of equation 2.5) will be zero and the circular variance will be
equal to one. Therefore, broad tuning curves will have circular variance
measurements approaching one. If all responses are zero except for the
preferred orientation in a tuning curve (impulse function), the resultant
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will be one, and circular variance will be equal to zero. Therefore, sharp
tuning curves will have circular variance measurements approaching zero.

2.3.4 Selectivity Breadth Index. There have also been statistical measure-
ments developed explicitly for quantifying the selectivity of neuronal tun-
ing curves. One example is the selectivity breadth index (SBI) applied to
the responses of ITC neurons to a set of object images morphed along a
continuum (Freedman et al., 2006). Responses were normalized to range
between 0 and 1 using Rmin and Rmax, and the median R̃ was subtracted
from one:

SBI = 1 − R̃ − Rmin

Rmax − Rmin
. (2.6)

SBI employs a similar strategy as skewness with respect to characterizing
tuning curve sharpness. If the median firing rate in the tuning curve is close
to the maximum, a lot of responses are close to the response to the preferred
feature, the tuning curve is relatively broad, and SBI approaches zero. If the
median firing rate in the tuning curve is close to the minimum, a lot of
responses are close to the response to the least-preferred feature, the tuning
curve is relatively narrow, and SBI approaches one.

2.4 Information-Theoretic Analysis. Although researchers generally
agree on an intuitive definition of sharpness of a tuning curve, there is
not a clear consensus about a general formal definition of tuning curve
sharpness. Individual definitions tend to rely on specific parameters of
the function used to model the tuning curve or are based on the specific
method chosen to quantify sharpness. Here, we wanted to develop a general
formal definition of sharpness of tuning curves using information-theoretic
analysis of simulated tuning curves so that we could verify that skewness
is an appropriate measure of sharpness. To be general, our definition had
to describe sharpness regardless of the underlying function or shape of the
tuning curve and had to capture information only about changes in shape.

One motivation for measuring the sharpness of a tuning curve has
been to quantify the selectivity of a neuronal response toward a stimu-
lus: a response of a neuron with a sharp tuning curve is more specific
in its selectivity of excitatory stimuli than a broadly tuned neuron. Infor-
mally, we expect that neural response selectivity is related to the degree of
information transmitted from a neuron by a single spike. After observing
a single spike from a sharply tuned neuron, more information is acquired
about the stimulus, and with greater certainty, than after observing a spike
from a broadly tuned neuron. In this letter, we formalized this intuition
using information theory and will show that skewness of the neural tun-
ing curve is highly correlated with the information gain that results from a
single action potential.
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There has been much research and debate regarding whether sharp tun-
ing curves are more effective at conveying information about a feature effi-
ciently (Tolhurst, Movshon, & Dean, 1983; Bradley, Skottun, Ohzawa, Sclar,
& Freeman, 1987; Scobey & Gabor, 1989; Geisler & Albrecht, 1997; Pouget,
Deneve, Ducom, & Latham, 1999; Zhang & Sejnowski, 1999; Series, Latham,
& Pouget, 2004; Purushothaman & Bradley, 2005; Butts & Goldman, 2006).
The effectiveness of communication is commonly measured using mutual
information or the related measure of Fisher information. Some studies find
that for a particular stimulus, discrimination is optimal for neurons with
steep tuning curves at that stimulus (Purushothaman & Bradley, 2005; Butts
& Goldman, 2006). Others find that for high noise levels (or, equivalently,
for small neural pools or short time windows), discrimination is optimal
for neurons with sharp peaks (Butts & Goldman, 2006). And finally, cer-
tain patterns of connectivity can result in circumstances where changes in
neural noise counteract any gains in information efficiency from increases
in sharpness (Pouget et al., 1999; Series et al., 2004). We do not examine
mutual information in this letter because its relationship with sharpness
depends on all of these factors and others. No unrestricted claim can be
made that sharpness is associated with higher mutual information in gen-
eral. However, we can show that tuning curve skewness is associated with
high information gain given a single spike.

The intuition we wish to formalize is that when the tuning curve has high
skewness, a single spike carries more information. More specifically, when
it is known that the neuron has fired recently, the uncertainty of the stimulus
is reduced by an amount that is greater for neurons with tuning curves with
high skewness. This intuition is reasonable only when properties of the neu-
ron’s tuning curve other than skewness are held constant. In particular, we
assumed that the mean firing rate and the tuning curve amplitude are fixed.

We began our formalization of this intuition with the definition of the
entropy of a probability distribution p(x), which is a measure of its uncer-
tainty. This is defined as

H[p(x)] = E[− log2 p(x)] = −
∑

x

p(x) log2 p(x), (2.7)

where H[p(x)] denotes the entropy of a distribution and E denotes expecta-
tion. Entropy is often described as the expected level of surprise under
distribution p. In this case, the “surprise” of an event x is defined as
− log2 p(x), with rare events being more surprising than common ones.
Surprise is defined to be logarithmic with respect to probability, matching
the intuition that two independent rare events are twice as surprising as
one. More formally, this definition of entropy is justified as measuring the
fewest possible number of bits of information required to transmit values
drawn from that distribution. Note that distributions that are nearly deter-
ministic or concentrated at a few points are less likely to produce surprising
values and therefore have lower entropy than distributions that are broader.
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Recall that we wish to formalize the intuition that a single spike conveys
more information when the neural tuning curve is sharp: when a sharply
tuned neuron fires, it disambiguates the driving stimulus more than a spike
from a broadly tuned neuron. Thus, we were interested in measuring the
uncertainty in estimates of the stimulus; in particular, we wanted to measure
how much that uncertainty is reduced by observing a neuron fire within
some small time window of length τ milliseconds. The exact value of τ

will have a negligible effect on the results as long as τ is sufficiently small
to ensure that the likelihood that the neuron fires twice within the time
window is very low. Let θ be some property of the stimulus (e.g., binocular
disparity), and let r be the neural response to that stimulus, defined as the
number of spikes within some small time window of length τ ms. Then
p(θ |r) gives the probability of the stimulus having value θ given that r
spikes were observed. We define the information gain of a single spike by

I[θ |r > 0] = H[p(θ )] − H[p(θ |r > 0)], (2.8)

where p(θ ) represents our prior knowledge of the stimulus (before seeing
any neural response). The event r > 0 represents the event that the neuron
fires during the time window. Here, we will assume that p(θ ) = 1/N, where
N is the number of possible stimuli θ .

It is important to note that many different aspects of neural response can
be measured and characterized using information theory (Borst & Theunis-
sen, 1999). Here, we chose to examine a specific aspect of neural behavior,
the information gain of a single spike, which was motivated from the in-
tuition about the significance of neural sharpness. Information theory may
be used to measure either the entropy of p(θ |r) or of p(r|θ ). The entropy of
p(θ |r) relates to the reliability of neural decoding, or how much is known
about the stimulus given the neural response. In contrast, the entropy of
p(r|θ ) relates to the reliability of neural encoding and the spread of neural
responses given to a single stimulus. Since we wished to verify the claim
that skewness is related to the information gain produced by a single spike,
we chose to examine the entropy of p(θ |r).

The information gained by observing a single spike from a neuron is
an important measure that influences how rapidly a neuron can signal a
change in a stimulus. A postsynaptic neuron can be made to fire very shortly
after receiving a small number of spikes from a small number of neurons.
Neurons also convey information by silence (e.g., when a tuning curve
has a primary negative peak), which can be expressed as I[θ |r = 0]. Because
neurons spend less time firing than not, I[θ |r = 0] is generally several orders
of magnitude smaller than I[θ |r > 0]. Mutual information can be expressed
as the weighted sum of the information gain of a spike and the information
gain of silence, weighted by the relative probabilities of spiking and not
spiking, respectively. Note that mutual information is generally applied
under the assumption that the response is steady and can be measured
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over time windows that are long enough to approximately estimate the
firing rate. However, if a change occurs in the stimulus, neurons should
be able to communicate the new stimulus within a small time window,
ideally before the firing rate can be estimated accurately. Because spikes are
rarer and more informative than silence, neurons with higher information
gain of a single spike are able to convey more information within a small
time window. In other words, while mutual information tells us the total
amount of information a neuron conveys on average, the information gain
of a spike tells us the maximum amount of information that the neuron
can convey within a small time window. In this section, our goal was to
formalize the hypothesis that tuning curve skewness is associated with
high information gain produced by a single spike. In other words, a neuron
with high skewness is better able to disambiguate the stimulus over a small
time window when at most one spike is present. Therefore, we chose a
small value for time window τ .

Ideally, in order to measure the information gain of a single spike, we
must measure the bivariate joint probability distribution p(r,θ ). In practice,
this is generally infeasible; p(r,θ ) requires many parameters to learn and
would require many trials of the same stimulus while recording from the
same neuron to measure accurately. Instead, let us suppose that p(r|θ )

follows a Poisson distribution:

p(r|θ )= f (θ )re− f (θ )

r!
, (2.9)

p(r > 0|θ )= 1 − e− f (θ ), (2.10)

where f (θ ) is the neuron’s tuning curve and is equal to the expected number
of spikes within time window τ given stimulus θ . In order to best formalize
our initial hypothesis, we would like to measure the information gain pro-
duced at some infinitesimal period of time. In practice, τ can be any small
value as long as only one spike is likely to occur within that period. Using
Bayes’ rule, we can write:

p(θ |r)= p(r|θ )p(θ )

p(r)
= p(r|θ )p(θ )∑

θ̃ p(r|θ̃ )p(θ̃ )
= p(r|θ )∑

θ̃ p(r|θ̃ )
(2.11)

p(θ |r > 0) = 1 − e− f (θ )∑
θ̃ (1 − e− f (θ̃ ) )

= 1
Z

(1 − e− f (θ )) (2.12)

where Z = ∑
θ̃ (1 − e− f (θ̃ ) ) and all stimuli are assumed to be equally likely,

so that p(θ ) is constant. We can now write the information gain of a spike
as where, again, N is the number of possible stimuli θ :

I[θ |r > 0] = log2 N +
∑

θ

1
Z

(1 − e− f (θ )) log2
1
Z

(1 − e− f (θ )). (2.13)
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Information gain and skewness are conceptually related in that both
measures depend on the shape of a tuning curve. However, information
gain is also highly sensitive to changes in either the mean firing rate or
the amplitude of the tuning curve (difference between the maximum and
minimum), while skewness is normalized for these characteristics. When
the amplitude is low, all stimuli elicit similar neural responses, and so it is
difficult to determine the stimulus θ from neural response alone and the
information gain is low. Tuning curves with higher amplitudes result in
much higher information gain. Similarly, when the mean firing rate is high
compared to the amplitude, the differences in neural responses produced
by different stimuli are low in comparison with the absolute firing rate.
This causes the information gain to decrease when mean firing rates in-
crease. Thus, a change in information gain may be due to either changes
in the tuning curve shape or the tuning curve’s amplitude or mean firing
rate. To distinguish these two sources of change, we defined shape-based
information gain Ĩ[θ |r > 0] as the information gain of a single spike after
the tuning curve has been normalized for amplitude and mean firing rate to
lie between 0 and 60 sps ·τ (sps: spikes per second). This gave us a measure
that depends on tuning curve shape and not tuning curve amplitude or
mean firing rate for direct comparison with skewness.

3 Results

We first examined how two commonly used parametric methods and our
nonparametric method of skewness describe changes in disparity tuning
sharpness. The methods were tested with example tuning curves with
known increases in sharpness over time that converge to a steady state
over several hundreds of milliseconds and are consistent with the average
behavior over a population of neurons and the dynamic tuning predicted
from a recurrent network model (Samonds et al., 2013). We describe which
parameters captured sharpening over time and under what conditions, as
well as when and why skewness captured more information about sharp-
ness than the parametric methods did. We then illustrate how skewness
can be applied to a wide range of tuning complexity by showing the re-
sults of measurements with simple orientation tuning curves with known
increases in sharpness over time and complex object tuning curves with
known changes in sharpness that depend on training and the orientation
of the presentation of the objects. We show how skewness was a more
accurate measurement than other nonparametric methods that have been
used to describe sharpness of orientation and object tuning curves. Finally,
using information-theoretic methods, we formally define sharpness of tun-
ing and show how skewness was consistent with this definition.

3.1 Relationship Between Sample Skewness and Tuning Function Pa-
rameters. Before we carried out a direct and thorough comparison between
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the parametric methods (see equations 2.1 and 2.2) and our statistical mea-
surement of skewness (see equation 2.3) that quantify sharpness for model
data and data from neurophysiological recordings, we looked directly at the
relationship between those disparity tuning function parameters that could
quantify sharpness and skewness for an illustrative example. We used the
results of this example to help us interpret the results when we applied the
methods to neurophysiological data.

For a Gabor function, the σ parameter describes the width of the gaus-
sian envelope (see Figure 1B). As σ decreases, the gaussian envelope be-
comes narrower, and as long as secondary peaks are present in the Gabor
function, they will be suppressed by the narrower envelope and skewness
will increase (see Figure 3A). The f parameter describes the frequency of
the sinusoidal component (see Figure 1B). In section 2.3.1, we explained
that a sinusoidal signal has zero skewness because it has an equal number
of data points above and below the mean at an equal distance from the
mean. Regardless of the frequency, a sinusoidal component will result in
zero skewness. However, when a sinusoidal component is combined with
a gaussian envelope, the envelope introduces a bias that leads to nonzero
skewness. The relationship between frequency and skewness depends on
the relationship between frequency and the bandwidth of the gaussian en-
velope. When more sinusoidal cycles are observed due to a large envelope
σ or high-frequency f, increases in f increase the magnitude of secondary
peaks, and that leads to decreases in skewness (see Figure 3B). When fewer
sinusoidal cycles are observed and the secondary peaks, are suppressed,
increases in f cause the primary peak to become narrower and skewness
increases (see Figure 3C). Overall, the relationship between Gabor parame-
ters and skewness is complicated and will vary over a reasonable range of
the Gabor parameter space that is typically used to describe some disparity
tuning curves (Prince et al., 2002).

For a difference-of-gaussians function, the σpeak parameter describes the
width of the positive gaussian component and the σvalley parameter de-
scribes the width of the negative gaussian component (see Figure 1C). When
the positive gaussian component becomes narrower (decreasing σpeak), there
is a sharper peak, and skewness increases (see Figure 3D). When the neg-
ative gaussian component becomes broader (increasing σvalley), there is a
subtle increase in skewness (see Figure 3E). Overall, there is a consistent
relationship between difference-of-gaussians parameters and skewness
over a reasonable range of the parameter space that is typically used to
describe some disparity tuning curves (Samonds et al., 2013).

3.2 Testing Parametric Methods and Skewness on Neurophysiologi-
cal Data with Changes in Sharpness. Disparity tuning sharpness increases
over time, increases with increasing stimulus size, and decreases for binoc-
ular anticorrelation stimulation in the macaque primary visual cortex; a
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recurrent model can account for those changes in sharpness (Samonds et al.,
2013). Sharpening over time was the strongest result from that study, with
several examples from recordings and a population average that clearly
matched the behavior of the model. Therefore, to test how effectively the
parameters from our functions (see equations 2.1 and 2.2) and skewness
(see equation 2.3) describe sharpness of disparity tuning, we applied these
methods to a model neuron with disparity tuning that is sharpened by a
population of recurrently connected disparity-tuned neurons and recorded
neurons with known sharpening of disparity tuning over time that matched
the model’s predictions (see section 2.1 and Samonds et al., 2013). The top
row in Figure 4 shows the initial disparity energy model tuning curve (in-
put) for a representative model neuron and the resulting tuning curve after
several iterations of recurrent inputs with other model neurons (steady
state). The following rows in Figure 4 show disparity tuning curves mea-
sured from recorded neurons in subsequently later windows of time that
were consistent with model tuning curves after several iterations of recur-
rent interactions. All five plots show clear examples of disparity tuning that
sharpens over time, making them ideal cases for testing our methods of
quantifying sharpness.

Sharpening was stronger in the earliest iterations and during the earliest
portion of the neuronal responses soon after the peak of the response onset.
Sharpening continued over iterations or time, but at a progressively slower
rate. This happened in the model because the behavior converged to a
steady state where the tuning curves no longer changed with a greater
number of iterations. Therefore, throughout this letter, and as we have
done previously (Samonds et al., 2009, 2013), we will present all of our
measurements versus log time steps (log iterations) or log time.

3.3 Using the Gabor Function to Measure Sharpness of Disparity
Tuning. For the same model and four example tuning curves presented in
Figure 4, we fit Gabor functions (see equation 2.1) to the data over time. The
plots in Figure 5A show the data and fits for the latest time window (450–
850 ms) to illustrate how well the fits describe sharpened tuning curves. The
plots in Figures 5B and 5C reveal how the fit parameters f and σ evolved
over time from tuning curves based on the mean firing rates computed
from sliding 100 ms windows. Figure 3A showed that the bandwidth of
the gaussian envelope σ can signal increased sharpness with decreases
in magnitude. Indeed, we found decreases in σ over time as sharpness
increased, but only for two example neurons with clear secondary peaks
that were suppressed over time (compare the second and third rows of
Figure 4 with the same rows in Figure 5C). Depending on which disparities
were measured with respect to the tuning curve, the positive or negative
peaks could have greater influence on determining the best-fit frequency
parameter. For our examples, it was unclear whether the frequency in-
creased, decreased, or did not change over time as sharpness increased
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Figure 5: Sharpening was not captured by measuring the frequency of the tun-
ing curve. (A) First, sharpening was characterized for example neurons with the
frequency, f, and/or bandwidth, σ , parameters using a Gabor fit. (B) The Gabor
frequency, f, versus time. (C) The Gabor bandwidth, σ , versus time. (D) Then
sharpening was characterized with the centroid frequency, f, and bandwidth,
bw, of the Fourier power spectrum. (E) The Fourier centroid frequency, f, versus
time. (F) The Fourier half-height bandwidth, bw, versus time.

(see Figure 5B). Overall, we found that neither the bandwidth parameter
nor the frequency parameter in Gabor fits was reliably and consistently
able to capture the increases in sharpness of disparity tuning that we ob-
served over time. In addition, achieving stable fits with a six-parameter
Gabor model was especially problematic for short instances of time when
the tuning curve was especially noisy, leading to many cases of outlier pa-
rameter estimates (e.g., frequencies more than five times the frequency esti-
mated based on the tuning curve measured over the entire stimulation time
period).

3.4 Using Fourier Analysis to Measure Sharpness of Disparity Tun-
ing. We also computed the Fourier power spectrum for the same model
and four example tuning curves presented in Figure 4 to further illus-
trate the difficulty of characterizing a frequency change in disparity tun-
ing over time. The plots in Figure 5D show the Fourier power spectrum
for the disparity tuning curves computed from the latest time window



880 J. Samonds, B. Potetz, and T. Lee

(450–850 ms). The plots in Figures 5E and 7F reveal how the centroid fre-
quency f and half-height bandwidth bw of the Fourier power spectrum
evolved over time using tuning curves based on the mean firing rates com-
puted from sliding 100 ms windows. There were similar problems with
using the power spectrum of the Fourier transform of the tuning curves
to characterize sharpness as there were with estimating the frequency pa-
rameter from a Gabor fit. This is because computing a Fourier transform
and fitting a complex function to data are subject to the same limitations
imposed by sampling and measurement uncertainty. Again, because the
central peak was increasing in frequency (narrowing) and the valleys were
decreasing in frequency (broadening), each influenced the Fourier trans-
form to emphasize one or the other. In addition, the frequencies of the peak
and valleys were close together, so we did not observe two distinct peaks
(see Figure 5D) moving in opposite directions over time. The centroid of the
power spectrum sometimes increased over time, did not change over time,
and decreased over time (see Figure 5E). If the frequencies of the peak and
valleys are the same initially (e.g., a Gabor function) and then the frequency
of the peak increases and the frequency of the valleys decreases over time,
the bandwidth of the power spectrum should increase over time as energy
would be spread across the two new frequencies in the sharpened disparity
tuning curve. Although bandwidth estimates of the power spectrum were
very noisy even for our robust examples, there was some evidence of a con-
sistent increase in bandwidth over time (see Figure 5F). Overall, the Fourier
transform did not capture the increases in sharpness of disparity tuning
that we observed over time.

3.5 Using the Difference-of-Gaussians Function to Measure Sharp-
ness of Disparity Tuning. Again, for the same model and four example
tuning curves presented in Figure 4, we also fit difference-of-gaussians
functions (see equation 2.2) to the data over time. The plots in Figure 6A
show the data and fits for the latest time window (450–850 ms) to illus-
trate how well these fits describe sharpened tuning curves. The plots in
Figures 6B and 6C reveal how the fit parameters σpeak and σvalley evolved
over time from tuning curves based on the mean firing rates computed
from sliding 100 ms windows. In Figure 6B, we plotted the bandwidth of
the positive gaussian component (σpeak), which decreased over time as the
primary positive peak narrowed. In Figure 6C, we plotted the bandwidth
of the negative gaussian component (σvalley), which increased over time as
the valleys broadened, although this trend was less clear than what was
observed for the positive gaussian component. A difference-of-gaussians
function still required us to fit 6 parameters to 11 data points, which leaves
it highly sensitive to the same problems that we encountered with Gabor
fits with parameter initialization and outlier results. Overall, though, fits
for these example disparity tuning curves that were well described by a
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difference-of-gaussians did capture increases in sharpness with decreases
in the σpeak parameter.

3.6 Using Skewness to Measure Sharpness of Disparity Tuning. Fi-
nally, for the same model and four example tuning curves presented in Fig-
ure 4, we computed the statistical measurement of skewness (see equation
2.3) on the data over time. The plots in Figure 7A show the data (left) for the
latest time window (450–850 ms) and skewness (right) using tuning curves
based on the mean firing rates computed from sliding 100 ms windows.
For all of our example neurons with sharpened tuning over time, skewness
clearly and consistently increased over time (see Figure 7A, right). Figure 7B
(left) shows the normalized population average of rank-order disparity tun-
ing over time for 184 neurons from Samonds et al. (2013) using the same
time windows as in Figure 4. Disparity tuning curves were sorted before
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averaging from the most- to least-preferred disparity (rank order tuning).
The population averages of corresponding skewness measurements over
time for the 184 neurons are shown in Figure 7B (right), illustrating that the
population trend was consistent with the model.
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Our four example neurons were tuned excitatory: they had reduced fir-
ing for most disparities and then had a higher firing for a preferred disparity.
Some disparity-tuned neurons can be tuned inhibitory: they fire a lot for
most disparities and then have reduced firing for a preferred disparity (Sa-
monds et al., 2013). If these negative peaks sharpen, skewness decreases,
becoming more negative (see Figure 2E). Tuned excitatory or inhibitory
neurons with relatively broad peaks that sharpen can start with negative
(see Figure 2E, fifth row) or positive skewness (see Figure 2E, second row)
and end up with positive (see Figure 2E, first row) or negative (see Fig-
ure 2E, sixth row) skewness, respectively. When we recently applied skew-
ness to tuning curves for a mixed population of tuned excitatory (79%) and
inhibitory (21%) neurons, we analyzed tuning dynamics in two different
ways (Samonds et al., 2013). First, we analyzed the subpopulations sep-
arately, where increasing skewness corresponded to greater sharpness for
tuned excitatory neurons and decreasing skewness corresponded to greater
sharpness for tuned inhibitory neurons. Second, we combined the subpop-
ulations for statistical analyses by inverting the data for tuned inhibitory
neurons so that increasing skewness always corresponded to greater sharp-
ness, which is how the data were analyzed in Figure 7B.

3.7 Comparison of Parametric and Nonparametric Methods of Mea-
suring Sharpness. Among the measures from the parametric models, the
change in the difference-of-gaussians peak width σpeak over time was most
consistent with changes in the non-parametric statistical measurement
of skewness. Both σpeak and skewness captured increases in sharpness of
disparity tuning over time. For all four examples from recorded neurons in
Figures 6 and 7, there were decreases in σpeak and increases in skewness, re-
spectively. In addition, the two measurements were significantly correlated
over time for all four examples with an average correlation of r = −0.51
± 0.06. To demonstrate that σpeak and skewness capture similar changes in
tuning curve shape over time, we generated a scatter plot of the changes
of σpeak versus the changes in skewness over time. As noted in the previous
section, a six-parameter difference-of-gaussians fit is highly sensitive to
parameter initialization, and not all disparity tuning curves were well
described by a difference-of-gaussians function, so the fits generated
instances of very noisy or extreme outlier results over time for even our
most robust examples. Therefore, we simplified our analysis for the entire
population of 184 neurons by dividing the responses for each neuron into
two windows of time rather than making the measurements continuously
over time. The early window was from 100 to 250 ms, and the late window
was from 450 to 850 ms. This allowed us to carefully adjust parameter
initialization for 368 disparity tuning curves so that the fits adequately cap-
tured the peak width of disparity tuning curves with the positive gaussian
component. We then plotted the ratio of the difference in σpeak between the
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Figure 8: Comparison of peak width σpeak and skewness. (A) Scatter plot of
change in σpeak (late – early)/(late + early) and change in skewness (late – early)
from an early window of time from stimulus onset (100–250 ms) versus a late
window of time from stimulus onset (450–850 ms). (B) Histogram of changes in
peak width from panel A. (C) Histogram of changes in skewness from panel A.

late- and early-window tuning curves (late − early)/(late + early) versus
the difference in skewness between the late- and early-window tuning
curves. Figure 8A shows a significant correlation (r = −0.26, p < 0.001)
between a reduction in the peak width (see Figure 8B) and an increase in
skewness (see Figure 8C).

Although the results in Figure 8A reveal that σpeak and skewness were cor-
related, there were notable differences between these two measures when
we examined them more closely. One difference is that the positive shift
from zero for changes in skewness is stronger than the negative shift for
changes in σpeak(see Figure 8C versus 8B). One reason that the parametric
method produced a weaker trend of sharpening compared to skewness was
that the difference-of-gaussians function does not adequately describe dis-
parity tuning for all neurons. For our four example neurons, the difference-
of-gaussians function did describe the tuning curve very well, and we were
able to measure a reduction in σpeak for all four examples. The examples in
Figure 9A illustrate that neurons with tuning curves that are not explained
well by a difference-of-gaussians function can result in a fit (gray) with a
broader peak width in the later time window (see Figure 9B, gray bars)
even though skewness still clearly increased in that window for these tun-
ing curves (see Figure 9B, black bars) that are visibly sharper for the late
versus the early period during stimulation (see Figure 9A, right versus left
plots).
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If we limited our parametric analysis to a smaller population (n = 44
neurons) of tuning curves where the difference-of-gaussians fit explained
at least 90% of the variance in the tuning curve (R2 ≥ 0.90), the reduction
in peak width (see Figure 9D) and its correlation with increasing skewness
(r = −0.48, p = 0.001; see Figure 9C) were much clearer and the results
between the two methods had a stronger relationship (compare the leftward
shift in Figure 9D to the rightward shift in Figure 9E). For the 140 neurons
that were not well described by a difference-of-gaussians function (R2 <

0.90), there was not a clear leftward shift in change in peak width (see
Figure 9G), but there was still a clear rightward shift in change in skewness
(see Figure 9H). In addition, the correlation was much weaker between
changes in peak width and skewness (r = −0.22, p = 0.01; see Figure 9F).

3.8 Testing Skewness on Orientation Tuning Curves. Since skewness
worked well in capturing sharpness of disparity tuning, we wanted to also
verify that it would capture sharpness of simpler tuning curves. Previous
studies have shown that orientation tuning curves in the primary visual
cortex (V1) also sharpen over time (Ringach et al., 1997, 2002). Because ori-
entation is a circular variable, these studies used the directional statistical
measurement of circular variance to characterize sharpening of orientation
tuning (see section 2.3.3). A high value of circular variance means that the
data are spread out evenly across all orientations and the tuning curve is
broad, while a low value of circular variance means that the data are con-
centrated at a single orientation and the tuning curve is sharp. We applied
circular variance and skewness to orientation tuning curves of neurons
recorded in areas V1 and V2 to test whether skewness captured sharpening
and compare the results of the two statistical measures. Circular variance
(see equation 2.5) and skewness were measured over time from orientation
tuning curves based on the mean firing rates of neurons computed in slid-
ing 100 ms windows. Figures 10A to 10C show the results for four example
neurons and the population average from 98 neurons. Figure 10A shows
the orientation tuning curves measured in subsequently later windows of
time (light-to-dark) and reveals that the tuning curves sharpened over time.
Figure 10B shows that circular variance is consistent with this observation
because it decreased over time, and Figure 10C shows that skewness is
consistent with this observation because it increased over time. We also
compared the two measurements on a neuron-by-neuron basis by plotting
the slopes of circular variance versus log time versus the slopes of skew-
ness versus log time computed from linear regression fits for each of n =
98 neurons and found that the two measurements were highly correlated
(see Figure 10D; r = −0.47, p < 0.001). Because a logarithmic fit might not
adequately describe sharpening dynamics for all neurons, we also mea-
sured the correlation between circular variance and skewness over time
for each neuron. The average correlation r was significantly negative (see
Figure 10E; μ = −0.40, p < 0.001).
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We also examined differences between circular variance and skewness
by looking at when circular variance and skewness disagreed or were not
strongly correlated. The example in Figure 10F actually conflicts with the
population trend with an orientation tuning curve that gets broader in
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shape over time (black is broader than gray). For this example, there is
essentially no change in circular variance (see Figure 10G, left) but a clear
decrease in skewness (see Figure 10G, right) between the early and late
period. The reason the two results differ is that skewness is normalized for
the mean and amplitude, while circular variance is normalized for only the
amplitude. By comparing the two y-axes in Figure 10F (gray and black), it is
clear that the mean firing rate decreased from the early to late time period,
which is common for V1 responses over this interval (Samonds et al., 2013).
Because the mean firing rate decreased, the baseline firing rate was lower
so the responses were effectively spread out less across all orientations for
the late tuning curve. This change led to a decrease in circular variance that
canceled out the increase in circular variance resulting from the broader
shape of the tuning curve. Since skewness is also normalized the for mean
firing rate, it provides a more accurate measure of changes in tuning curve
shape.

3.9 Testing Skewness on Object Tuning Curves. Finally, we wanted
to test whether skewness would capture sharpness of tuning curves that
are more complex than disparity tuning. Neurons in the inferior temporal
cortex (ITC) respond selectively to complex objects (Tanaka, Siato, Fukada,
& Moriya, 1991) and because it is not feasible to determine, test for, or
characterize tuning for ITC neurons for all possible objects, tuning curves
for ITC neurons are unlikely to be practically described by a simple function.
Most ITC tuning curves depend on the set of stimuli used to measure the
tuning curve and are usually presented as a matrix of mean firing rates for
the complex set of objects or a sorted tuning curve ranked from the most to
least preferred object (rank-order tuning).

Freedman et al. (2006) have shown that tuning curves for ITC neurons
become sharper after training, but more strongly when the tuning is mea-
sured with objects presented at the same or similar orientations used during

Figure 9: Comparison of peak width σpeak and skewness for poor difference-
of-gaussians fits (R2 < 0.90). (A) Two examples of disparity tuning curves with
poor difference-of-gaussians fits (gray). (B) Change in σpeak (gray) and skewness
(black) of late versus early tuning curves in panel A. Comparison of peak width
σpeak and skewness for good (C–E) and poor difference-of-gaussians fits (F–H).
(C) Scatter plot of change in σpeak (late – early)/(late + early) and change in
skewness (late – early) from an early window of time from stimulus onset
(100–250 ms) versus a late window of time from stimulus onset (450–850 ms)
for disparity tuning with good difference-of-gaussians fits. (D) Histogram of
changes in peak width from panel C. (E) Histogram of changes in skewness
from panel C. (F) Same scatter plot as panel C, but for disparity tuning with
poor difference-of-gaussians fits. (G) Histogram of changes in peak width from
panel F. (H) Histogram of changes in skewness from panel F.
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training. In that study, they used an ad hoc statistical measure, the selectivity
breadth index (SBI; see equation 2.6), that employs a very similar strategy
to skewness (see section 2.3.4). SBI examines how close the median is to
the minimum or maximum value of the tuning curve. When the median
is near the maximum, the tuning curve is broad and SBI has low values.
When the median is near the minimum, the tuning curve is sharp and SBI
has high values. We applied SBI and skewness to object tuning curves of
neurons recorded in ITC (Freedman et al., 2006) to test whether skewness
captured changes in sharpness and compare the results of the two statis-
tical measures. SBI and skewness were measured for object tuning curves
computed from the mean firing rates early in the response (80–180 ms)
at seven different orientations relative to the orientation of the objects the
monkeys were trained on for a category discrimination task (Freedman
et al., 2001, 2006). Figures 11A to 11C show the results for four example
neurons and the population average from 186 neurons. Figure 11A shows
the rank-order object tuning curves measured at seven orientations relative
to the trained orientation (dark-to-light) and reveals that the tuning curves
were sharpest at the trained orientation (dark). Figure 11B shows that SBI
consistently decreased away from the trained orientation, and Figure 11C
shows that skewness consistently decreased from the trained orientation.
Both statistical measurements correctly captured greater sharpness for the
orientation used in training observed in Figure 11A. We also compared the
two measurements on a neuron-by-neuron basis by plotting the change
in SBI (0 degrees versus 180 degrees from trained orientation) versus the
change in skewness for each of n = 186 neurons and found that the two mea-
surements were highly correlated (see Figure 11D; r = 0.83, p < 0.001). We
also measured the correlation between SBI and skewness over the seven
presentation orientations for each neuron. The average correlation r was
significantly positive (see Figure 11E; μ = 0.84, p < 0.001).

We also examined differences between SBI and skewness by looking at
when SBI and skewness disagreed or were not strongly correlated. The

Figure 10: Examples of sharpening of orientation tuning over time for neu-
rons from neurophysiological recordings in V1 and V2. (A) Normalized tuning
curves at different windows of time. (B) Circular variance (V ) versus time.
(C) Skewness versus time. Population averages are presented in the bottom
row of panels A–C. All orientation tuning curves were aligned with their peak
at 90 degrees. Error bars are standard error with respect to neurons. (D) Com-
parison of slopes of circular variance (V ) versus log time and slopes of skewness
versus log time. (E) Histogram of correlation measured for individual neurons
of circular variance and skewness over time. (F, G) Example of when V and
skewness results disagree. (F) Orientation tuning was measured in a window
of 100–250 ms (early) and 400–850 ms (late) from stimulus onset. (G) V and
skewness measurements computed from the tuning curves in panel F.
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example in Figure 11F is a rank-order object tuning curve that is sharper
for the trained versus 180 degrees from the trained orientation (black is
sharper than gray). For this example, there is essentially no change in SBI
(see Figure 11G, left), but a clear decrease in skewness (see Figure 11G,
right) between the trained and untrained orientations. The reason the two
results differ is that SBI is computed from only three data points from the
tuning curve (see equation 2.6) and skewness uses all 18 data points from
the tuning curve (see equation 2.3). The three data points that SBI uses are
the minimum, median, and maximum. Figure 11F shows that there is little
change in those three data points between the trained and 180 degrees from
trained orientation. Therefore, from the perspective of the SBI measurement,
there is very little difference between the two tuning curves (see Figure 11G,
left). However, the tuning curves are clearly different with one tuning curve
(black) being sharper than the other (gray), which is reflected in the skew-
ness results (see Figure 11G, right). This example illustrates how SBI can be
a less robust, and therefore inaccurate, measure of overall changes in shape
than skewness, since it depends on a limited sample of the tuning curve.

3.10 Comparing Skewness with Kurtosis. Another standard statistical
measure that has been used previously to characterize the shape of tuning
curves is kurtosis (Lehky et al., 2005, 2011; Lehky & Sereno, 2007). Both kur-
tosis and skewness are moments of a distribution (in addition to mean and
variance) and are therefore very similar mathematically (compare equation
2.4 to 2.3). However, despite this mathematical similarity, skewness and
kurtosis can capture very different properties of tuning curve shape. To
illustrate the similarities and differences between skewness and kurtosis,
we repeated all the skewness measurements shown in Figures 7, 10, and 11
using kurtosis instead (see Figure 12).

Figure 11: Examples of sharpening of object tuning based on presentation orien-
tation (with respect to training orientation) for neurons from neurophysiological
recordings in inferior temporal cortex (Freedman et al., 2006). (A) Normalized
rank-order tuning curves. (B) Selectivity breadth index (SBI) versus presentation
orientation. (C) Skewness versus presentation orientation. Population averages
are presented in the bottom row of panels A–C (all data are from Freedman et al.,
2006). Error bars are standard error with respect to neurons. (D) Comparison
of change in SBI and change in skewness from the orientation used in training
versus 180 degrees from the orientation used in training. (E) Histogram of corre-
lation measured for individual neurons of SBI and skewness over presentation
orientation. (F, G) Example of when SBI and skewness results disagree. (F) Ob-
ject tuning measured at the orientation used in training versus 180 degrees from
the orientation used in training. (G) SBI and skewness measurements computed
from the tuning curves in panel F.
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Figure 12: Comparison of skewness and kurtosis. (A) Skewness over time for
disparity tuning (n = 184 neurons). (B) Skewness over time for orientation tun-
ing (n = 98 neurons). (C) Skewness of object tuning versus presentation orienta-
tion with respect to orientation used for training (n = 186 neurons). (D) Kurtosis
over time for disparity tuning. (E) Kurtosis over time for orientation tuning.
(F) Kurtosis of object tuning versus presentation orientation with respect to
orientation used for training. (G) Scatter plot of kurtosis slope versus skewness
slope over log time for individual disparity tuning curves. (H) Scatter plot of
kurtosis slope versus skewness slope over log time for individual orientation
tuning curves. (I) Scatter plot of change in kurtosis versus change in skewness
from a presentation orientation of 0 to 180 degrees with respect to orientation
used for training. (J) Example early (100–250 ms) and late (400–850 ms) disparity
tuning curves. (K) Example early (100–250 ms) and late (400–850 ms) orientation
tuning curves. (L) Example object tuning at presentation orientations 0 and 180
degrees with respect to orientation used for training. (M) Skewness and kurtosis
measurements of tuning curves in panel J. (N) Skewness and kurtosis measure-
ments of tuning curves in panel K. (O) Skewness and kurtosis measurements
of tuning curves in panel L. All error bars are standard error with respect to
neurons.

For all three measurements, the average trend of kurtosis was similar
(Figures 12D–F compared to Figures 12A–C) and highly correlated (see
Figures 12G–I) to the average trend of skewness, as would be expected
from the similar equations. The trends were statistically weaker for kurtosis
compared to skewness for changes in sharpness of disparity tuning over
time (significant positive slope: p = 0.004 versus p < 0.001; see Figure 12D
compared to Figure 12A) and changes in sharpness of object tuning with
respect to viewing orientation (significant difference between 0 and 180
degrees from training: p = 0.50 versus p = 0.01; see Figure 12F compared
to Figure 12C). For changes in sharpness of orientation tuning over time,
the trends were statistically equal in strength for skewness and kurtosis
(see Figures 12B and 12E). Likewise, the correlation between kurtosis and
skewness was stronger for changes in sharpness of orientation tuning over
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time compared to changes in sharpness of disparity tuning over time or
changes in sharpness of object tuning with respect to viewing orientation
(see Figure 12H compared to Figures 12G and 12I).

We also examined individual cases where kurtosis and skewness
strongly disagreed to gain some insight into why kurtosis produces a
weaker statistical trend for some experiments. In Figure 2E, we showed
that skewness increases for sharpened peaks but decreases for sharpened
valleys or increases for broadened valleys. As a fourth-order moment, kur-
tosis increases for both sharpened peaks and sharpened valleys. As we
showed in Figure 1, the peaks sharpen while the valleys broaden for dis-
parity tuning over time. In Figure 12J, we present an example of disparity
tuning that sharpens over time. In this example, there is an increase in
skewness (see Figure 12M, left) and a decrease in kurtosis (see Figure 12M,
right) over time. This is because the two valleys broaden while only the
peak sharpens over time. In Figure 12L, we see a similar discrepancy arise
between kurtosis and skewness for object tuning that sharpens for presen-
tations from 0 to 180 degrees with respect to the trained orientation for the
same reason that kurtosis and skewness disagreed for disparity tuning. In
this case, because we are looking at tuning based on stimulus rank, the peak
corresponds to rank 1 and the valley corresponds to rank 18. For stimuli
presented at the trained orientation (see Figure 12L, black; 0 degrees), the
response to different objects drops at a relatively faster rate (more vertical)
near the peak (i.e., sharpening) and a relatively slower rate (more horizon-
tal) near the valley (i.e., broadening) compared to the untrained orientation
(see Figure 12L, gray; 180 degrees) resulting in an increase in skewness
(see Figure 12O, left) and a decrease in kurtosis (see Figure 12O, left). Al-
though kurtosis and skewness were highly correlated for orientation tuning
(see Figure 12H) and orientation tuning has traditionally been modeled by
the unimodal gaussian function (Henry et al., 1973), there were still cases
where kurtosis and skewness could strongly disagree because of valleys
for even orientation tuning. First, the underlying mechanisms of sharp-
ened orientation tuning result in valleys, and these sharpened orientation
tuning curves are modeled more accurately with difference-of-gaussians or
difference–of–von Mises functions (Somers et al., 1995; Xing et al., 2005).
These valleys can produce the same effect observed in Figures 12J and 12L.
Second, if the orientation tuning curve spans more than 180 degrees (see
Figure 12K, gray), the edges of this broad tuning curve effectively can be
viewed as negative peaks or valleys that result in negative skewness and
increased kurtosis (see Figure 12N). As the tuning curve becomes sharper
over time (see Figure 12K, black), skewness increases and becomes positive
(see Figure 12O, left), but kurtosis decreases (see Figure 12O, right). This
discrepancy between kurtosis and skewness can be reduced by testing a
wider range of orientations, but in many cases, a valley will still be present
over this wider range because the response will start to increase again for
orientations drifting in the opposite direction. Overall, skewness was more
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Gabor Tuning Curves Gaussian Tuning Curves Uniform Random Tuning CurvesA B C

Figure 13: For various families of neural tuning curves, skewness is closely
related to the information gain produced by a single spike once tuning curves
are normalized by amplitude and mean firing rate.

effective at capturing the general observed changes in sharpness for these
three experiments.

3.11 The Relationship Between an Information-Theoretic Definition
of Sharpness and Skewness. Finally, we tested whether skewness was con-
sistent or correlated with our information-theoretic definition of sharpness
(see section 2.4). We generated a set of random tuning curves of various
complexities and compared the shape-based information gain Ĩ[θ |r > 0]
with the skewness of these tuning curves. In Figure 13, we show scatter
plots of shape-based information gain versus skewness for 5000 randomly
generated tuning curves for three classes of tuning curves. In all classes,
there were N = 13 data points across the feature θ in the tuning curve, and
the shape-based information gain was measured within τ = 10 ns. Thirty
percent uniform white noise was added to the tuning curves to simulate
measurement error. Rather than normalize the heights of the tuning curves
f by the minimum and maximum, which are unstable and sensitive to out-
liers, we normalized them by the 15th and 85th percentiles, respectively. In
Figure 13A, f (θ ) was set as a Gabor function with a random phase, wave-
length between two and four stimulus units, and a gaussian envelope with
a standard deviation selected uniformly between 1 and 4. In Figure 13B,
f (θ ) was set as a gaussian function with a standard deviation selected uni-
formly between 1 and 4 and a preferred stimulus chosen randomly from
the central seven stimuli. In Figure 13C, f (θ ) was selected independently
for each θ from a uniform distribution from 0 to 60 sps·τ . In all three classes,
the shape-based information gain was highly correlated with skewness.

We can also use a Taylor series argument to show that the shape-based
information gain tightly correlates with skewness. First, let us define

f̃ (θ ) = f (θ ) − f̄
σ

, (3.1)
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where f̄ is the mean firing rate and σ is the standard deviation. Note that
equation 3.1 is the z-score of the neural responses. Our goal is to compute
the information gain of a single spike for the tuning curve A · f̃ (θ ) − B,
where B is the baseline firing rate of the tuning curve or the minimum of f̃
and A is the amplitude of the tuning curve or the maximum of f̃ minus the
minimum of f̃ . Let us define

g(x) ≡ (1 − e−Ax+B) log2(1 − e−Ax+B) (3.2)

so that

Ĩ[θ |r > 0] =
∑

θ
g( f̃ (θ )). (3.3)

We can then write the Taylor series of g(x) as

g(x) ≈
∞∑

n=0

xn g(n)(0)

n! log 2
, (3.4)

where g(n)(0) is the nth order derivative of g evaluated at zero. Note that
g(n)(0) does not depend on x. Because f̃ is normalized, we know that
1
N

∑
f̃ (θ ) = 0 and 1

N

∑
f̃ (θ )2 = 1 and that 1

N

∑
f̃ (θ )3 = skewness [ f ] (see

equation 2.3). Thus, the first four terms of the Taylor series expansion are
linear with respect to skewness.

It can be shown that the values of g(n)(0) are given by

g(0)= (1 − eB) log(1 − eB), (3.5)

g(n)(0)= (−1)n−1AneB
(

pn(e−B)

(e−B − 1)n
+ log(1 − eB)

)
, (3.6)

where each pn(s) is a polynomial of order n that is defined recursively as

p1(s) = 1, (3.7)

pn+1(s) = nsp(s) − s2 p′(s) − p(s) + sp′(s) − (s − 1)n−1. (3.8)

This can be verified by repeatedly differentiating g. Because f̃ has unit
variance, B must be below −1. When B ≤ −1,

tn
n!An can be shown to quickly

approach zero. Thus,
tn
n! must approach zero faster than exponentially, or An.

Recall that τ is generally set to some near-infinitesimal value. Thus, A should
be much smaller than 1, and so

tn
n! must converge quickly. In summary,

the first three terms of the Taylor series expansion are independent of f,
the fourth term is proportional to skewness[f], and subsequent terms are
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comparatively small. Thus, shape-based information gain Ĩ[θ |r > 0] must
closely correlate with skewness.

In Figure 13, the information gain flattens or continues to decrease from
zero skewness to negative skewness values. These data points include tuned
inhibitory neurons, which exhibit high firing rates for nonpreferred stimuli
and a decreased firing rate for their preferred stimulus. We previously
found that for tuned inhibitory disparity tuning, the negative primary
peak around the preferred disparity sharpened and skewness decreased
to progressively more negative values (Samonds et al., 2013). As noted in
section 2.4, neurons can also convey information by silence when a tun-
ing curve has a primary negative peak. Because silence occurs more often
than spikes, the information gain of silence is generally much weaker than
the information gain of a spike. Nonetheless, the two types of information
gain can be related with respect to tuning curve sharpness. A tuning curve
for a tuned excitatory neuron fe(θ ) can be expressed in terms of a tuned
inhibitory neuron fi(θ ) as

fe(θ ) = −A · fi(θ ) + B. (3.9)

For any positive A and B, the skewness of fe(θ ) will be the arithmetic
opposite of the skewness of fi(θ ). In addition, the shape-based information
gain of silence for fi(θ ) would increase for progressively more negative
skewness in a similar manner as the shape-based information gain of a spike
for fe(θ ) increases for progressively more positive skewness. Therefore,
decreases in skewness can still be applied to capture increases in sharpness
for those special-case tuning curves that have a reduced response for a
preferred feature.

4 Discussion

We introduced the method of using the statistical measurement of the sam-
ple skewness of the distribution of mean firing rates of a tuning curve
to measure changes in sharpness. We applied this nonparametric method
to binocular disparity tuning curves measured from example model neu-
rons and recorded neurons in V1, orientation tuning curves measured from
recordings in V1 and V2, and object tuning curves from recordings in ITC
with visible changes in sharpness. We found it difficult to quantify changes
in sharpness for complex tuning curves such as disparity tuning with a
single parameter from functions such as a Gabor because the tuning ex-
plicitly deviated from that function as it sharpened. Skewness provided
us with a simpler measurement that can increase the statistical power of a
set of data compared to parametric methods by including more neurons,
and skewness captures several observed sharpening behaviors. Finally, we
demonstrated that changes in skewness directly correspond to changes in
information about tuning curve shape.
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4.1 Implications of Measuring Tuning Curve Sharpness. Sharpness
of tuning can have implications on feature discrimination (Spitzer et al.,
1988; Freedman et al., 2006; Lee et al., 2012) and optimizing feature repre-
sentations (Tolhurst et al., 1983; Bradley et al., 1987; Scobey & Gabor, 1989;
Geisler & Albrecht, 1997; Purushothaman & Bradley, 2005; Butts & Gold-
man, 2006). It is important to reiterate, however, that there are many dif-
ferent aspects of neural responses that can be measured and characterized
using information theory (Borst & Theunissen, 1999), and many different
properties, in addition to sharpness, can influence discrimination based on
tuning curves (Pouget et al., 1999; Zhang & Sejnowski, 1999; Kang, Shapley,
& Sompolinsky, 2004; Series et al., 2004; Purushothaman & Bradley, 2005;
Butts & Goldman, 2006). In this letter, we illustrate how sharpness of tuning
influences the information gain of a spike, if all these other neural properties
are held constant between tuning curves with differing sharpness.

There is also importance to quantifying sharpness of tuning beyond be-
havioral changes in feature discrimination and the potential changes in in-
formation provided about the feature. The relationship between sharpness
and stimuli properties (Chen et al., 2005; Xing et al., 2005; Samonds et al.,
2013), the temporal dynamics of sharpness (Ringach et al., 1997; Menz and
Freeman, 2003; Samonds et al., 2013), the dependence of sharpness based
on cortical layer (Blasdel & Fitzpatrick, 1984; Fitzpatrick et al., 1997) or cell
types (Lee et al., 2012), and changes in sharpness from attention (Spitzer
et al., 1988) or training (Freedman et al., 2006) can all provide valuable infor-
mation about local underlying recurrent inputs. Recurrent circuits can play
a role in contour integration and interpolation (Lee & Nguyen, 2001; Li,
Piech, & Gilbert, 2006), surface interpolation (Samonds, Tyler, & Lee, 2014),
and development (Li, Van Hooser, Mazurek, White, & Fitzpatrick, 2008) so
understanding their spatial and temporal characteristics is important for
understanding many aspects of visual processing.

Olshausen and Field (1996) have proposed that a sparseness constraint
for encoding sensory information could explain the development of simple
cell receptive field properties for neurons in the primary visual cortex. Using
a sparse coding strategy has many computational advantages in represent-
ing and storing information among a population of neurons (Barlow, 1972;
Vinje & Gallant, 2000; Olshausen & Field, 2004). Sparseness of responses
among a population of neurons and sharpness of tuning of individual neu-
rons to complex or natural sets of stimuli are conceptually related quantities
(Rolls & Tovee, 1995; Lehky et al., 2005, 2011; Franco, Rolls, Aggelopoulos,
& Jerez, 2007) and many of the same nonparametric measures that have
been used to capture sharpness and selectivity of tuning curves have also
been used to measure the sparseness of responses among a population
of neurons (Olshausen & Field, 1996, 2004; Bell & Sejnowski, 1997; Vinje &
Gallant, 2000; Simoncelli & Olshausen, 2001; Lehky et al., 2005, 2011; Franco
et al., 2007; Lehky & Sereno, 2007; Tolhurst et al., 2009). Likewise, the ar-
guments we make about skewness being a good measure for capturing



898 J. Samonds, B. Potetz, and T. Lee

changes in tuning curve sharpness would also apply to skewness being a
good measure of population sparseness.

4.2 Difficulties of Parametric Methods in Describing Sharpness. The
primary problem with fitting a Gabor function to tuning curves or com-
puting the Fourier transform of a tuning curve to characterize sharpness is
that both methods assume that an increase in sharpness corresponds to an
increase in the frequency of the disparity tuning function. This assumption
was not true based on our observations of disparity tuning dynamics (see
Figure 5; however, see also Menz & Freeman, 2003). The primary peak in
the disparity tuning function was increasing in frequency, but the valleys
were decreasing in frequency (see Figure 1). Prince et al. (2002) also previ-
ously noted that their Gabor fits deviated from their data in that measured
tuning curves had side flanks that were wider than the peak. A difference-
of-gaussians function was better at capturing the observed dynamics of
disparity tuning (see Figure 6), but it still produced statistically weaker re-
sults than skewness because the function does not describe disparity tuning
well for all neurons (see Figures 8 and 9).

Overall, parametric methods can be inadequate in cases where the source
of those changes (e.g., recurrent interactions) causes tuning curves to ex-
plicitly deviate from any simple or complex functions that model the tun-
ing curve. Parametric methods will succeed only when the magnitude of
changes in sharpness is larger than the differences between the observed
data and fitted function to explain the tuning, as well as when sharpening
can be incorporated explicitly and simply into the function that describes
the tuning curve. Indeed, parametric methods such as the difference-of-
gaussians fits were comparable to skewness if we limited our analysis to
only those neurons that were well described by the difference-of-gaussians
function (see Figures 9C to 9E). However, that criterion severely reduced
our data from 184 to 44 neurons, which means that we would have needed
four times as many data to observe informative trends of disparity tuning
dynamics (Samonds et al., 2013). In addition, not all disparity tuning curves
for neurons will necessarily be described well by one particular function.

4.3 Advantages and Disadvantages of Sample Skewness in Capturing
Sharpness. Skewness captures several behaviors of a complex model in a
single value because it increases for narrower peaks, broader valleys, and
suppression of secondary peaks. A minimum of two parameters is necessary
to capture more than one of these sharpness characteristics. This can be
viewed as an advantage for skewness because you can quantify changes in
sharpness with that one value produced by a relatively simple computation
(see equation 2.3) that requires no fits, no parameter initialization, and
no interpolation. However, this can also be viewed as a disadvantage for
skewness in that the skewness value alone does not describe which specific
aspect of the tuning curve shape changed that caused skewness to increase.



Sample Skewness as a Statistical Measurement 899

Therefore, parametric methods, even when applied to a subset of data where
model fits are adequate, can complement skewness in providing additional
information about specific changes in tuning curve shape.

Another advantage of skewness and nonparametric methods in general
is that they can be applied to responses to any set of stimuli, whereas para-
metric methods must use a set of stimuli defined by at least one of the
model parameters. This allows nonparametric methods to be applied to
more complex sets of stimuli such as natural images and movies, which
can be used to characterize neuronal responses under more ecological con-
ditions (Lehky et al., 2005). This also makes nonparametric methods more
suitable for characterizing tuning for more complex neurons that are still
poorly understood with respect to the precise sensory parameters that mod-
ulate their responses such as IT neurons (Lehky et al., 2005, 2011). However,
this flexibility of nonparametric measurements leads to a dependence of the
measure on the set of stimuli. The relative number of nonpreferred stimuli
compared to preferred stimuli can lead to large changes in skewness values.
For a parametric method such as the bandwidth of an orientation tuning
curve, the measurement will be more stable across different sets of stimuli.
This makes it more difficult to compare skewness across different experi-
ments and neurons and makes it a more suitable measurement for charac-
terizing changes in sharpness rather than absolute levels of sharpness.

The main advantage of skewness, and most standard statistical measure-
ments in general, is their simplicity because they characterize the shape
based on variation from the mean or median of the tuning curve and do
not depend on any specific model of tuning. This advantage of skewness in
capturing sharpness compared to any of the parameters from model fits (see
Figure 9) allowed us to examine more neurons, which allowed us to observe
a variety of more subtle dynamics in disparity tuning sharpening that have
provided us deeper insight into the underlying recurrent circuitry in V1
(Samonds et al., 2013). Finally, we demonstrated that skewness can capture
sharpness for tuning curves from multiple areas of the brain that encode
visual information with varying levels of complexity (see Figures 7, 10, and
11). Because diversity in tuning curve shapes for even one feature may not
be described well by a single function, this flexibility of skewness in captur-
ing sharpness for a variety of functions allows it to be applied to all tuning
curves regardless of their shape. Finally, we demonstrated that skewness
for a wide range of tuning curve functions is strongly correlated with the
information gain per spike in a coding framework that benefits from sharp
tuning (see Figure 13) and derived a direct relationship between skewness
and information gain. This formalization provides a clear definition of tun-
ing curve sharpness and theoretical justification for applying skewness to
describe changes in tuning curve shape.

4.4 Comparison of Sample Skewness to Other Nonparametric Mea-
sures of Sharpness. First, we applied skewness to orientation tuning
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curves and compared the results to another statistical measure (circular vari-
ance) that several previous authors have applied to describe the sharpening
of orientation tuning (Ringach et al., 1997, 2002; Gur, Kagan, & Snodderly,
2005; Tao, Cai, McLaughlin, Shelley, & Shapley, 2006; Zhu, Xing, Shelley,
& Shapley, 2010; Chavane et al., 2011; Nauhaus, Nielsen, Disney, & Call-
away, 2012; Nandy, Sharpee, Reynolds, & Mitchell, 2013). Circular variance
and skewness produced similar results in capturing visible sharpening of
orientation tuning over time (see Figure 10). However, there are important
differences between the measures:

• Circular variance is limited to circular variables like angle, while
skewness does not depend on the variable. Therefore, circular vari-
ance could not be applied to disparity and object tuning curves.

• Circular variance is limited to unimodal tuning curves. For exam-
ple, skewness would still conclude a tuning curve was sharper with
two sharpened peaks while circular variance would not necessarily
conclude that the tuning curve was sharper.

• Circular variance is normalized for amplitude but not for the mean,
while skewness is normalized for both, which means skewness more
accurately describes changes in tuning curve shape such as sharpness
(see Figures 10F and 10G).

The statement that skewness is a more accurate description of changes in
tuning curve shape such as sharpness does not imply that skewness is also a
better measurement of tuning curve selectivity or discrimination compared
to circular variance, as well as many other nonparametric measures of tun-
ing curve selectivity that do not normalize for changes in mean or baseline
firing rates (Rolls & Tovee, 1995; Rainer, Assad, & Miller, 1998; Moody,
Wise, di Pellegrino, & Zipser, 1998). As we noted in section 2.4, the mean
and amplitude of the tuning curve can strongly influence our measure of
information gain. Tuning curve discrimination based on the Chernoff dis-
tance is also highly sensitive to baseline firing rate (Kang et al., 2004). This
leads to a strong correlation between circular variance and Chernoff dis-
tance compared to sharpness based on tuning curve width, although the
correlation between Chernoff distance and sharpness increases when mak-
ing very fine discriminations. Therefore, one nonparametric measurement
is not necessarily more appropriate than the other in describing selectiv-
ity; rather they can be complementary and capture changes to different
properties of tuning curves that may be influenced by different underlying
mechanisms and may serve different neural computational roles.

Next, we applied skewness to object tuning curves and compared the re-
sults to the nonparametric measure called the selectivity breadth index (SBI)
that previous authors have applied to describe sharpness of object tuning
(Freedman et al., 2006). SBI and skewness capture very similar statistical
properties, so it was not surprising that they also produced similar results in
capturing visible changes in sharpness such as for object tuning with respect
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to viewing orientation (see Figure 11). Although the two measures are based
on capturing similar behavior, they can be influenced very differently by
different changes in the tuning curve. These differences become more pro-
nounced with a greater number of data points included in the tuning curves.
For example, SBI can be strongly influenced by changes or noise for only the
minimum, median, and maximum value in the tuning curve. With enough
data points, there would be little influence on skewness from changes or
noise to just those same three data points because skewness incorporates
all data points from the tuning curve into its computation. This means
that skewness would generally be more robust to outlier noise and a more
accurate measurement of sharpness than SBI (see Figures 11F and 11G).

We also compared skewness to kurtosis for disparity, orientation, and
object tuning curves (see Figure 12), which has been used previously to
characterize the selectivity of tuning curves (Lehky et al., 2005, 2011; Lehky
& Sereno, 2007) and has also been used widely to describe sparseness
of responses among a population of neurons (Olshausen & Field, 1996;
Lewicki & Sejnowski, 2000; Willmore & Tolhurst, 2001; Olshausen & Field,
2004). Although kurtosis and skewness are very similar mathematically,
they measure different properties of a distribution and will capture dif-
ferent properties about tuning curve shape. Skewness, kurtosis, and the
other moments are related to the Taylor series coefficients of the moment-
generating function of a distribution, which provides a way to alter the
skewness of any distribution without affecting the kurtosis, and vice versa
as long as the moments exist. Just as there are families of distributions
with fixed skewness that have differing kurtosis, there are other families
of distributions with fixed kurtosis that have varying skewness. The pa-
rameters of the beta distribution, for example, can be expressed in terms of
kurtosis and skewness, which is often how beta distributions are fit from
data, using the method-of-moments. For a simple example of how to alter
skewness without altering kurtosis, consider that for any probability dis-
tribution function p(x), the distribution p(−x) will have equal kurtosis but
opposite skewness. The examples in Figures 12M and 12N (left) nearly il-
lustrate this example: skewness changes from negative to positive between
the two conditions. Kurtosis does not remain constant between these condi-
tions but does decrease (see Figures 12M and 12N, right), which is a change
in the opposite direction as the change in skewness. Vice versa, symmet-
rical sharpening or broadening of p(x) will alter kurtosis without altering
skewness. Thus, kurtosis cannot capture all properties that are captured by
skewness and skewness cannot capture all properties that are captured by
kurtosis. Instead it is more accurate to say that in spite of the similarity
in their mathematical forms, skewness and kurtosis capture different (and
independent) properties of distributions.

In terms of neural tuning, kurtosis increases when both peaks (near-
maximal firing) and valleys (near-minimal firing) of a tuning curve sharpen.
In contrast, skewness increases when peaks sharpen and valleys broaden.
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The results of kurtosis and skewness will be tightly coupled for unimodal
tuning curves with positive peaks (single peak and no valleys) and sampling
that includes enough data below the mean (e.g., stimuli with a baseline re-
sponse) so that skewness is always positive. Indeed, for orientation tuning
curves, which most closely followed those conditions, we did observe the
most similar results and strongest correlation between kurtosis and skew-
ness (see Figure 12H). However, because we observed disparity tuning
curves that strongly exhibited sharpening peaks and broadening valleys
(e.g., see Figure 1A), we found skewness to be a more appropriate measure
of changes in neural tuning shape for our experiments. The increases to
kurtosis from a sharpened peak were canceled out by decreases in kurto-
sis from broadened valleys, which lead to statistically weaker trends for a
population of neurons (see Figure 12). This problem was strongest for dis-
parity and object tuning curves, which had clear multimodal features (see
Figures 12J and 12L), but even factored into measurements for orientation
tuning curves that also exhibit some multimodal features (see Figure 12K).
Because skewness and kurtosis capture changes to different properties of
tuning curve shape, they, like some of the other nonparametric measures
described in this section, can be complementary. We have described the
specific tuning curve shape properties that skewness captures and demon-
strated how those properties influence the information gain of a spike.
Lehky et al. (2005) have described the tuning curve properties that kurtosis
captures and demonstrated how those properties influence the entropy of
a tuning curve.

We have compared or described only a small subset of alternative non-
parametric measures that can quantify sharpness of tuning curves. We chose
particular examples to compare to skewness to highlight some general dif-
ferences between common measures of sharpness and selectivity. There are
potentially endless numbers of statistical measures that could also ade-
quately quantify sharpness of tuning, including other measures of skew-
ness. Many of these nonstandard measures, though, are less robust than
skewness and prone to similar errors as those that we observed with SBI
(see Figures 11F and 11G). Because many nonparametric measures capture
distinct properties of tuning curve shape, it is important to understand
their mathematical properties and what definition of sharpness or selectiv-
ity is being expressed when applying those measures. We have made a case
about the specific benefits and provided an information-theoretic definition
for the standard measure of sample skewness in capturing multiple sharp-
ness properties for a diverse set of tuning curve shapes and complexities.

5 Conclusion

We applied the statistical measurement of skewness to our binocular dis-
parity tuning curves because we were unable to reveal properties of the
underlying network interactions in V1 when attempting to fit commonly
used Gabor functions over time. The tuning curves were diverging from
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Gabor functions over time in a complex manner that could not be cap-
tured by a single parameter. In this letter, we provide an intuitive rationale,
empirical evidence, a statistical motivation, and an information-theoretic ar-
gument for using skewness to quantify the sharpness of tuning, which can
be applied to a wide range of tuning curves throughout the nervous system.
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