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ABSTRACT

Contrast gain control has been found to be an important and common mechanism underlying the 

visual system's adaptation to the statistics of the visual scenes. Yet, the biophysical factors and 

computational rules governing its operation remain elusive. In this paper, we first studied the basic 

factors underlying contrast gain tuning in a neuronal model. We found that the nonlinearities 

(threshold and saturation), which are common to all spiking neurons, determines the preferred 

contrast sensitivity as well as the maximum information coding capacity of the neuronal model. We 

then investigated the design principles underlying adaptive gain control in various stimulus 

conditions, and found that an adaptive rescaling mechanism predicted by information transmission 

maximization can explain a variety of observed contrast gain control phenomena in 

neurophysiological experiments, including the divisive adaptation of the input-output function to 

mean contrast, and the inverse power law relation between response gain and input contrast. Our 

results indicated that the contrast gain control mechanisms in the visual systems may have a 

purpose of maximizing information encoding of input signals in varying environmental conditions.
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INTRODUCTION

The visual systems exhibit great flexibility in adapting their input-output functions to the mean 

(Creutzfeldt, 1972; Werblin and Copenhagen, 1974; Walraven et al., 1990) and the variance 

(Shapley and Victor, 1978; Ohzawa et al., 1982) of luminance intensity in the visual environment.

The amplitude gains of the transfer functions of visual neurons were found to decrease with input 

contrast (Shapley and Enroth-Cugell 1984). The relationship between the amplitude gain and the 

input contrast has been found to follow an inverse power law relationship (Truchard et al., 2000). 

In addition, the contrast response functions of visual cortex neurons were found to adapt to the 

mean contrast by shifting along the contrast axis to match the range of the prevailing input signals 

(Ohzawa et al., 1982; Geisler and Albrecht 1992). These phenomena are called contrast gain 

control and have been observed in many different types of neurons in sensory systems of many 

species, such as neurons in the retina (see reviews by Shapley and Enroth-Cugell 1984; Benardete 

and Kaplan, 1999), striate (Ohzawa et al., 1982), extrastriate visual cortex (Kohn and Movshon 

2003) of mammals, and fly H1 neurons (Brenner, et al., 2000; Fairhall et al., 2001). 

Recently, a number of biophysical and neural models have been advanced to account for contrast 

gain control, including the normalization model (Heeger 1992, Carandini et al., 1997), the synaptic 

depression model (Abbott et al., 1997) and a more recent model based on background excitatory 

and inhibitory synaptic modulation (Chance et al., 2002; Prescott and Koninck 2003). There are 

also intensive recent experimental efforts to isolate the various biophysical factors and mechanisms 

underlying contrast gain control. Biophysical factors that have been implicated in gain control 

include threshold (Heeger 1992; Sakai and Naka 1995), synaptic depression (Abbott et al., 1997), 
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synaptic noise (Chance et al., 2002), dendritic saturation (Prescott and Koninck 2003), long-term 

slow adaptation (Ohzawa et al., 1985; Smirnakis et al., 1997), and active ionic channels in the spike 

generation (Sanchez-Vives et al., 2000; Kim and Rieke, 2001, 2003). While it is possible that these 

multitudes of modulating biological and cellular mechanisms can co-exist to affect various aspects 

of contrast gain adaptation (Demb 2002; Piebe and Ferster 2002), the rules by which the various 

factors are adjusted to mediate gain control and the principles governing the determination of these 

factors remain unclear. 

In this paper, we investigated the basic biophysical causes and the computational principles 

underlying contrast gain control by studying a cascade model of an adaptive linear kernel followed 

by a static nonlinearity. We first isolated the effect of gain tuning due solely to the static 

nonlinearity and then investigated the principles underlying the adaptive rescaling mechanism. We 

found that the amount of rescaling predicted by the principle of maximizing information 

transmission enables the model to reproduce many important aspects of the contrast gain control 

phenomena that cannot be explained by the static LN model alone, including the divisive 

adaptation of the contrast-response function to mean contrast (Ohzawa et al., 1985; Geisler and 

Albrecht 1992), and the power-law relationship in the gain-contrast curve (Truchard et al., 2000). 

This work therefore makes clear the relationships between static nonlinearity and gain tuning, and 

the relationships among adaptive linearity, contrast gain control and information maximization. Our 

results suggest that contrast gain control observed in neurophysiological experiments reflect an 

underlying adaptive mechanism that serves to maximize information encoding of the input signals 

in a dynamic environment.
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MATERIALS AND METHODS

The static LN cascade model

It has been recognized that the static nonlinearity alone can potentially produce some change in 

effective gain as measured in neurophysiological experiments (Chander and Chichilnisky 2001, 

Schwartz et al., 2002; Pillow and Simoncelli, 2003; Paninski 2003). Understanding the scope of the 

influence of static nonlinearity in contrast gain control is important for dissecting the different 

aspects of the phenomena. To dissect factors necessary for the common properties of all spiking 

neurons and factors specific to neurons with contrast gain control properties, we begin with the 

basic linear-nonlinear (LN) model which captures two essential properties of sensory neurons: 

linear kernel and static nonlinearity. 

[Figure 1 about here.] 

 

The static LN cascade model (see Fig.1a) is given by a linear kernel function h(t), followed by a 

static nonlinearity g(.), which has been widely used to model the experimental phenomena (see a 

review by Meister and Berry 1999). Here, h(t) = sin(πt/τa)exp(-t/τb) with τa = 80 ms and τb = 100 

ms. Linear response x(t) is given by 

0

( ) ( ) ( ) .x t h s t dτ τ τ
+∞

= −∫

The nonlinearity is specified by 
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where θ is threshold and η is saturation level. y(t) is the response of the neuron. What are the exact 

effects of the static nonlinearity on the recovered transfer function h'(t) measured in 

neurophysiological experiments? What is the relationship between the real linear function h(t) and 

the recovered linear kernel h'(t) ? Attempts have been made by experimentalists to isolate the 

'adaptive' effect due to static nonlinearity in the gain adaptation phenomena. In these studies, the 

transfer function of the neuron was usually obtained using the spike-triggered averaging methods 

(Chander and Chichilnisky 2001; Schwartz et al., 2002; Pillow and Simoncelli, 2003; Paninski 

2003) or Wiener Kernel techniques and their extensions (Lee and Schetzen 1965; Korenberg 1988; 

Marmarelis 1993). In our derivation, we use h'(t) to indicate the recovered linear kernel, and g'(t)

the recovered nonlinearity, so as to investigate the relationship between h(t) and h'(t), g(t) and g'(t). 

Signals with Gaussian distributions are widely observed in nature and have been widely used as 

input signal to study neurons' response properties in experimental studies (e.g. Sakai et al., 1995; 

Smirnakis et al., 1997; Benardete and Kaplan, 1999; Truchard et al., 2000; Kim and Rieke, 2001; 

Rieke, 2001; Chander and Chichilnisky, 2001). Here, Gaussian white noise stimulus s(t) with mean 

µ and SD σ is used as input signal. Its probability density function (PDF) is given by 

2

22

2

1

2

s

sp e σ
πσ

−
= . The linear response x(t) also has a Gaussian distribution with PDF 
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=< >= ∫ , where <...> denotes time 

average. 
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The adaptive LN cascade model 

In the second part of the paper, we will investigate the underlying factors and design principles for 

contrast gain control phenomena by the adaptive LN model. We introduce an adaptive rescaling 

mechanism to the LN model to investigate how the information transmission capacity of the 

neurons, as determined by their thresholds and saturation levels, can be fully utilized by an adaptive 

rescaling mechanism. This mechanism rescales the amplitude of the linear function by a factor β

depend on input σ (Fig. 1b). With this addition, the linear kernel is given by h(t) = 

β(σ)sin(πt/τa)exp(-t/τb). We call β(σ) the adaptive rescaling factor, and the model the adaptive LN 

cascade model (Fig.1b). 

Information theory 

The amount of information transmitted by either the static or the adaptive LN cascade can be 

quantified using Shannon's information theory (Shannon and Weaver 1949). For a communication 

channel with input s(t) and output y(t), the total output entropy 

2( ) ( ) log ( )
y

H y p y p y= −∑
quantifies the channel's theoretical limit on information transfer capacity, while the mutual 

information in discrete form (Dayan and Abbott 2001), 

,

( ) ( | ) ( ) ( ) ( ) ( | ) ( | )m
y s r

I H y H y s p y p y p s p y s p y s= − = − +∑ ∑
measures how much of that capacity is utilized to transmit and encode the input signal. H(y\mid s) 
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can be defined as noise entropy, accounting for the variability in the response that is not due to 

variations in the stimulus, but comes from noise sources. For simplicity, we consider the noiseless 

case, where H(y | s) = 0. In this case, the mutual information is set to be equal to the output entropy 

Im = H(y). The probability distribution of the output response y(t) can be derived from Eq.[1] and 

[2]. We can compute the entropy of y(t) directly from this distribution using Eq.[4]. 

RESULTS

Wiener kernel methods (Lee and Schetzen 1965; Korenberg 1988; Marmarelis 1993) were 

frequently used in neurophysiological experiments to identify or recover the transfer function of the 

neurons using Gaussian white noise input. It was found that the transfer function recovered from 

the sensory neurons can change in three ways, though not necessarily simultaneously: (1) a 

decrease in the gain of the kernel with an increase in signal variance (Shapley and Victor, 

1978,1979,1980; Smirnakis et al., 1997; Truchard et al., 2000; Kim and Rieke 2001,2003; Rieke 

2001; Chander and Chichilnisky 2001). (2) a dilation of the kernel size in space and time at lower 

contrast stimuli (Shapley and Victor, 1978,1979,1980; Smirnakis et al., 1997); and (3) a divisive 

adjustment of the contrast-response curve as a function of input mean contrast (Ohazawa et al., 

1982, 1985; Geisler and Albrecht 1992; Kohn and Movshon 2003). Here, we will first examine the 

effect of the static nonlinearity on gain tuning and then discover the adaptive mechanism 

underlying the observed contrast gain control phenomena. 
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Effective gain tuning due to the static nonlinearity

To understand how static nonlinearity can modulate the effective transfer function of the cascade 

model, we derive an effective transfer function h'(t), a function of input variance σ2, the response 

threshold θ and the saturation level η. First, the Fourier transform of the output x of the linear 

kernel in the cascade model is given by 

( ) ( ) ( )X f H f S f=

where H(f) and S(f) are the Fourier transforms of the linear kernel h(t) and the input signal s(t) 

respectively, and f is temporal frequency. According to Bussgang's theorem (Bendat 1990), for any 

memoryless nonlinear system y = g(x) with an input signal drawn from a Gaussian distribution, 

K(f), the Fourier transform of the optimal linear transfer function, specifying the input-output 

relationship of the static nonlinearity g(x) is given by

*

* 2

( ) ( ) ( )
( ) ,

( ) ( ) x

Y f X f xg x
K f

X f X f σ
< >= =

where X(f) and Y(f) are the Fourier transforms of signal x(t) and output y(t) respectively, and * 

stands for conjugate.

For the entire static LN model, the optimal linear transfer function T(f), the Fourier transform of the 

resultant linear kernel h'(t), is given by

Page 10 of 43

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

The Journal of Neuroscience
For Peer Review Only



*

*

( ) ( )
( ) ,

( ) ( )

Y f S f
T f

S f S f
=

where S(f) is the Fourier transform of input signal s(t). Combining Eqs.[3] and [4], and noting that 

X(f) = H(f)S(f), we have

2

( )
( ) ( ) ( ) ( ) ,

x

xg x
T f H f K f H f σ

< >= =

where H(f) and T(f) are the Fourier transforms of the original linear kernel h(t) and the resultant 

first order Wiener Kernel h'(t), respectively. This indicates the entire effect of the static nonlinearity 

on the recovered kernel is simply introducing a gain scaling factor to the original linear kernel in 

the LN model. 
2

( )

x

xg xα σ
< >=  is called the gain factor.

Although we restrict ourselves here to the case of a Gaussian input signal, Eq.[6] can be easily 

generalized to handle the non-Gaussian case using Scarano's generalization of Bussgang's theorem 

(Scarano, 1991). Although this generalization requires that the nonlinearity g(.) be smooth, the 

threshold and saturation function used here can be approximated by nonlinearities that are smooth, 

such as a sigmoidal function. 

Therefore, the resultant linear kernel h'(t) is given by h'(t) = α ▪ h(t) where gain factor α quantifies 

how the amplitude of the recovered linear kernel h'(t) is affected by the static nonlinearity 

(threshold θ, saturation η) and the standard deviation σ of the stimulus variation. 
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The gain factor α is estimated by

2
2 2

0

( ) ( )
( )

( )

( )

x x

x

x x p dx xp dx
xg x

h d

η

θ η
θ η θ

α σ σ σ τ τ

+∞

+∞

− + −
< >= =

∫ ∫
∫

Performing the integrations and simplifying yields

1
( ) [ ( ) ( )] [ ( ) [ , ]].

2 2 2x x

erf erf P x t
η θα σ θ ησ σ= − = ∈

[Figure 2 about here.] 

 

The basic conclusion of this analysis is that the gain of the measured effective transfer function will 

change with input variance due to the effect of the static nonlinearity, even though the parameters 

of the LN model θ and η are fixed. To illustrate this phenomenon, we fix θ = 5 and η = 40, and plot 

the gain α for signals with different σ's according to the analytical equation. Fig.2a shows the 

resultant linear kernel h'(t) is heavily dependent on the value of σ. Interestingly, we found that α is 

not monotonic, it increases with σ in the small σ range, reaches a maximum, and decreases with a 

further increase in σ (circles in Fig.2b). To confirm these analytical results, we applied the standard 

Wiener kernel technique (Lee and Schetzen 1965; Korenberg 1988; Marmarelis 1993) to recover 

the linear Wiener Kernel for the whole static LN model based on the Gaussian white noise input

s(t) and the output y(t) of the model. The amplitude gain of the recovered kernel (triangles in
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Fig.2b) in this computational study is shown to match well with the prediction of our theoretical 

analysis. The recovered kernel ĥ'(t) only exhibited gain scaling relative to the linear kernel h(t). 

There is no temporal dilation or contraction of the linear kernel. The computational study therefore 

confirms the correctness of our theoretical results.

The gain tuning curve arises from the static nonlinearity and thus is a function of the threshold θ

and the saturation level η. This gain tuning curve determines the neuron's preference to the 

distributions of different σ. The optimal σopt in which gain is maximum can be obtained by 

differentiating Eq.[10], which gives

2 2
2

2

0

2(ln ln ) ( )
opt

h d

θ ηα
η θ τ τ

+∞
−=

− ∫

The obtained σopt increases with saturation η (see Fig.2c). It also increases slightly with an increase 

in threshold θ (Fig 2d). This might provide a mechanism and rules for a neuron to adjust its transfer 

function and gain tuning curve according to the statistical context of the input signals. However, the 

range of adjustment of the optimal σ by changing η and θ is rather limited. Based on this analysis, 

we conclude that in the discovering contrast gain control phenomena conventional kernel method 

(Lee and Schetzen 1965; Korenberg 1988; Marmarelis 1993) cannot avoid the nonlinear effect. 

Nonlinearity introduces a contrast gain tuning phenomenon, which is an intrinsic property of the 

nonlinear systems. This tuning property determines the preferred contrast sensitivity of the system 

to the input signals with various statistical distributions. However, note that the relationship 

between effective kernel gain and input variance in this LN model is non-monotonic in the general 
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case (Fig.2b). This is inconsistent with recent experimental findings, which showed that the 

recovered gain of the linear kernel decreases with the input contrast (Shapley and Victor 1978, 

1979, 1980; Benardete and Kaplan 1999), and even displays an inverse power law relationship 

(Truchard et al., 2000; Chander and Chichilnisky 2001; Smirnakis et al., 1997). Thus, static LN 

model cannot explain the contrast gain control phenomena. To isolate gain change due to adaptive 

change in the system, one must factor out the effect due to static nonlinearity. Additional adaptive 

mechanisms may exist accounting for the interesting power law relationship. (Under extreme 

circumstances, if very strong input is presented to the static LN model that causes the neuron to 

saturate and fire at its maximal rate, it is possible for this model to follow the inverse power law 

relationship. However, this is not general case examined in experiments.)

Effective nonlinearity 

Effective nonlinearity as defined in experimental studies (Chander and Chichilnisky 2001) is the 

relationship between the neuron's actual output y(t), and the linear response x'(t) of the estimated 

(recovered) linear kernel h'(t). Here we will demonstrate the relationship between the real 

nonlinearity g(x) and the recovered effective nonlinearity g'(x').

Recall that h'(t) = α ▪ h(t), the generator signal x'(t) is given by the convolution of the effective 

kernel with the stimulus, i.e.

' '

0

( ) ( ) ( ) .x t h s t dτ τ τ
+∞

= −∫

[Figure 3 about here.] 
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In Fig.3a, we plot the recovered effective nonlinearity for the static LN model for various values of 

σ. The curves shift to the left with an increase in σ. However, this shift in the effective nonlinearity 

g'(x') curve is  entirely due to the scaling of h(t) by the gain factor α in a static LN model. When x'(t, 

σ) is divided by gain factor α(σ), all the effective nonlinearity curves become superimpose together 

(Fig.3b). Thus, given that the static nonlinearity is invariant, one can estimate the gain factor α' that 

makes the rescaled effective nonlinearity g'(x'/α') overlap with g(x). This is basically the intuition 

behind the neurophysiological experimental studies by Kim and Rieke (2001), Rieke (2001), and 

Chander and  Chichilnsky (2001). They modeled the sensory neuron by cascade linear kernel and 

static nonlinearity for various input contrasts. Assuming the static nonlinearity is invariant with 

contrast, they identified the α' that scales the g'H(x) for high contrast to be equal to the static 

nonlinearity of the low contrast g'L(x). Then they computed linear filter h'L(t) = h'H(t)/α' and found 

that this adjusted h'L(t) is still different from the original hL(t) (see Fig.4 in the paper by Chander 

and Chichilnsky (2001)). Then they concluded that the gain change observed in the recovered 

linear kernel might be derived from an underlying contrast gain control mechanism. Our theoretical 

analysis makes clear the underlying assumptions of their approach and the implication of their 

results. Furthermore, our analytical results provide a means for estimating the underlying static 

nonlinearity g(x) and the effective gain α in such neurophysiological experiments. These results 

clearly indicate that contrast gain control goes beyond effective gain change due to the static 

nonlinearity. 

Invariant input-output relationship 

Contrast response curve or the input-output relationship is useful for probing the contrast gain 
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control phenomena (Ohzawa et al., 1985; Geisler and Albrecht 1992). Gaussian white noise signal, 

while useful for deriving the effective linear wiener kernel, is inappropriate for estimating the 

input-output relationship of the system. This is because the temporal variation of the signal is faster 

than the convolution window of the cell's kernel, resulting in many-to-one input-output (I/O) 

mapping, and thus a fuzzy I/O curve. To recover the input-output relationship, experimenters 

typically used a stimulus that keeps an input attribute constant for a period of time ∆t, and obtain 

the output by averaging the response of the neuron during that period (Ohzawa et al., 1982,1985; 

Geisler and Albrecht 1992). For example, a spatial sinewave grating of a particular luminance 

contrast (the input attribute) will be drifted across the receptive field of the measured neuron. The 

temporal frequency of the sinewave grating is typically about 2 cycles per second. Gratings of 

several contrast values are presented for ∆t = 4 seconds each, for a total of 10 times. These contrast 

values are chosen to be within one octave of a given mean value. This experiment is then repeated 

several times, with different mean contrast values (see Fig.1 in the paper by Ohzawa et al., 1985). 

For each mean value, a contrast sensitivity curve is plotted which gives the neural response for each 

contrast value. The response of the neurons was found to adapt to the mean contrast of the signals, 

causing the contrast sensitivity curve to shift to the right as the mean contrast is increased (see Fig.3 

in the paper by Ohzawa et al., 1985). This adaptation of the contrast response function to mean 

contrast is a hallmark of contrast gain control. 

[Figure 4 about here.] 

 

Can static LN model produce the shifting contrast response relationship? To answer this question, 

we simulated this experiment with the static cascade LN model, using one-dimensional temporal 

sinewave gratings of different contrasts (see the red line in Fig.4a) as input to the neuron. Here, a 
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sinewave grating with a temporal frequency of 10 Hz can be considered the carrier signal (see 

Fig.4a), amplitude modulated by the input contrast signal c(t). Signals modulated by each contrast

c(t) is presented for ∆t = 4 seconds. The contrast values are drawn from a Gaussian white 

distribution with standard deviation σc. This standard deviation determines the mean contrast level 

of the signal in each sequence, which lasts for 1000 seconds. The input-output curves are obtained 

from sequences of four different mean contrast levels, with σc = 1, 5, 10, and 20 respectively. To 

plot the input-output curve, the model's response for each time bin ∆t is averaged to get a mean 

output value for each contrast value. 

Fig.4b shows the input-output curves for the various mean contrast levels. The perfect overlap of 

the input-output curves indicate that the contrast sensitivity function for this static model does not 

shift with mean contrast level as observed in neurophysiological experiments. The slope of the 

input-output relation is independent of mean contrast level, and is not affected by the nonlinearity. 

Hence, the shifting of the contrast sensitivity function as observed in the similarly constructed 

neurophysiological experiments (Ohzawa et al., 1982,1985; Geisler and Albrecht 1992; Sanchez-

Vives et al., 2000; Kohn and Movshon 2003) cannot be attributed to the static nonlinearity. There 

should exist adaptive mechanisms underlying contrast gain control phenomena and shifting contrast 

response curves. It should be noted that when the contrast variation is slow (i.e. ∆tc, the time unit of 

constant contrast σ is large) relative to the characteristic time scales of the linear kernel h(t), then 

the contrast response function is invariant as in this simulation experiment. When the contrast 

variation is fast (∆tc < 0.1 second) or when the luminance variation is too fast (i.e. temporal 

frequency of the sinewave > 20 Hz in each ∆tc) relative to the time scales of the linear kernel, then 

the input-output relationship of the system will be distorted to be fuzzy due to the convolution 
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effect discussed at the beginning of this subsection. 

Information maximization principle 

In the last section, we have showed that static nonlinearity can modulate the gain of the effective 

kernel as a function of σ, resulting in contrast gain tuning and that it determines the preference of 

the system to input distributions. However, we found it failed to account for two important 

neurophysiological observations concerning contrast gain control, i.e. (1) the shift of the contrast 

response function as a function of the mean contrast (Ohzawa et al., 1982,1985; Geisler and 

Albrecht 1992; Sanchez-Vives et al., 2000; Kohn and Movshon 2003); (2) the inverse power law 

relations between response gain and contrast (Smirnakis et al., 1997; Truchard et al., 2000; Chander 

and Chichilnisky 2001). What could be the mechanisms and principles that can account for these 

adaptation phenomena? Contrast adaptation phenomena have been interpreted in terms of the 

principle of information transmission maximization (Atick and Redlich 1992, Adorjan et al., 1999; 

Wainwright 1999; Brenner and Bialek 2000, Schwartz and Simoncelli 2001) from several 

perspectives. However, the analytical relationship between information maximization and contrast 

gain control is not clear. What is the relationship between gain tuning and information transmission 

in the static LN model and what is the relationship between the adaptation and maximal 

information transmission? In what sense can contrast gain control be understood in terms of 

information maximization? To answer these questions, we first analyzed information transmission 

quantitatively in the static LN model. Then we investigated how information transmission can be 

maximized for each signal distribution by adaptively rescaling the linear kernel in the LN cascade 

model. We will show in the following that the results of this adaptive rescaling can account for 

several important aspects of contrast gain control that static nonlinearity fails to explain. This result 
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therefore establishes an additional conceptual link between information maximization and various 

phenomena in investigation of contrast gain control. 

Information transmission in the static LN model

The gain tuning effect due to the static nonlinearity can affect the information encoding process of 

the system. Now we use Shannon’s information theory (see Eq.[4]) to quantify the information 

transmission of the LN model. We computed the mutual information Im for various threshold, 

saturation and stimulus σ by Eq.[4]. Fig.5a shows that mutual information, in a way similar to 

effective gain, varies nonlinearly with input σ, exhibiting a tuning curve, with maximum at an 

intermediate σ. This optimal σ is corresponding to the maximum information transmission of the 

system, and is denoted by σopt'. For a given σ, the maximum Im increases with an increase in 

saturation value or with a decrease in the threshold value. The tuning curve indicated that any 

nonlinear system with threshold and saturation properties can only best encode or transmit signals 

of a particular range of σ, and will not encode adequately signals outside this range without 

adaptation of its parameters. The variance-dependent mutual information tuning curve can be 

adjusted by modifying its threshold and saturation levels, in a manner similar to its adjustment of 

its variance-dependent gain tuning curve (see Fig.2c and 2d). In fact, mutual information Im is 

roughly proportional to the gain factor α (see Fig.5b), suggesting that efficient information 

encoding and gain maximization are tightly correlated. 

The above findings indicate that for any system like such a static model, only signals with preferred 

variance can be processed efficiently by the system. For the input with other variances, the 

information transmission capacity of the system cannot be fully utilized. Considering the visual 
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systems exhibit great flexibility to adapt themselves to various environment conditions, in the next 

section, we will explore an adaptive mechanism that will allow the system to fully utilize its 

transmission capacity regardless of the variance of the signals. 

[Figure 5 about here.] 

 

Information maximization in the adaptive LN model

Fig.5a shows that for a static LN model with given threshold and saturation, there exists an optimal 

input distribution with σopt' which can induce maximal information transmission in the LN system 

(recall that σopt maximizes gain). To maintain maximal information rate for any given input σ, we 

propose an adaptive mechanism that rescales the amplitude of the linear kernel in the LN cascade 

so that the output of the linear kernel x' is effectively adjusted to operate at the optimal regime of 

the given static nonlinearity. Let the rescaling factor be βadapt(σ), then the linear kernel for the 

adaptive LN model is given by, 

( ) ( )*sin( / ) exp( / )A adapt a bh t t tβ σ π τ τ= −

where βadapt(σ) is determined as the appropriate scaling factor necessary for maximizing 

information transmission for each input variance. The precise biophysical mechanism for mediating 

this effect is not known at presence, and presumably can be mediated by a variety of biophysical or 

network feedback mechanisms. Our primary task here is to elucidate the rules underlying the 

choice of the scaling factor, and the ramification of such a choice on the contrast gain control 

phenomena.
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We propose that the adaptive rescaling mechanism essentially chooses βadapt(σ)  = βopt for each σ so 

that the maximum of the information transmission capacity Imax of the system can be reached. Note 

that, for the adaptive LN model,

( ) ( )*s( , )

( )*s( , )

( )*( s( , ))

A

adapt

adapt

x t h t t

h t t

h t t

σ
β σ

β σ

=
=

=

( )* ( , )adapth t s t β σ=

Therefore, choosing βadapt = βopt = σopt' /σ produces an output x(t) that is statistically equivalent to 

the output produced by the static linear model when exposed to stimulus with σ = σopt'. Thus, this 

definition of βopt maximizes the information transmission for the adaptive LN model. Fig.6a shows 

that the information transmission for such an adaptive LN model is maintained at the highest level 

Imax independent of the variance of the signal input. Note that for the static LN model, Im varies 

with σ, with only one global maximum Imax at a particular σopt' (see Fig.6a). The adaptive model 

thus ensures that the capacity of the system be fully utilized for any statistical inputs. The 

maximum of information transmission is constrained only by the threshold and the saturation level 

(Fig.6b). The lower (or higher) is the threshold (saturation), the higher is the maximum information 

rate. 

[Figure 6 about here.] 

 

Recent experimental works on H1 neurons of blowfly by Brenner, et al. (2000) and Fairhall et al., 

(2001) provided direct evidence that the scaling of the input-output relation is set to maximize 

information transmission for each distribution of signals. Fairhall et al., (2001) found that when the 
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variance of the input σ2 was abruptly changed from one level to another, the information 

transmission rate dipped transiently, but then rapidly bounced back to the same constant level. 

While they have not established that this constant level was the highest possible level of 

information transmission rate, the fact that it is maintained at a constant level is consistent with our 

proposal that an adaptive mechanism is used to maintain information transmission at the highest 

capacity of the model for different signal distributions (Fig.6b). 

The total response gain of the adaptive LN model here is defined as the amplitude of the recovered 

linear kernel from input s(t) and output y(t). From Eq.[13], we know that total gain comes from two 

effects: gain due to the nonlinearity effect (see Eq.[9]), and gain due to the true adjustment 

βadap=βopt . Gain due to the nonlinearity, i.e., α, can be derived from Eq.[16] and Eq.[9], where we 

see that α is a constant for various input σ and equal to α(σopt'). Thus, the total gain factor for the 

adaptive LN model (the gain between s(t, σ) and y(t)) is 

' ' '( ) ( ) /opt opt optγ σ β α σ α σ σ σ=

Fig.6c demonstrates the inverse power-law relationship between input σ and the total gain γ of the 

adaptive LN model. This inverse power law relationship in the gain-variance curve has been 

observed in several recent experimental studies (Truchard et al., 2000, Smirnakis et al. 1997; 

Chander and Chichilnisky 2001). In particular, Truchard et al. (2000) decomposed the measured 

behaviors of the neurons into an adaptive linear kernel and a static nonlinearity. They found the 

gain of the recovered linear function of a cat simple cell and the contrast of the monocular input 

stimulus follows an inverse power-law relationship (Fig.6d). The prediction of the optimal γ -- σ
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relationship (with slope -1) is superimposed on the Fig.6d. A slope of -1 indicates the adaptive 

system is completely effective in information maximization, while a slope of 0 indicates complete 

ineffectiveness. The measured simple cells exhibited a slope around -0.75, suggesting that the 

neurons, to a large extent, are re-scaling the gain adaptively to optimize information transmission. 

It is important to note that without the information maximizing adaptive rescaling, the relationship 

between the response gain and σ is a bell-shape curve (as shown in Fig.2) rather than an inverse 

power-law. Our analytical results therefore provide insights to the empirical findings of Truchard et 

al. (2000), illuminating the connection between the empirical inverse power-law observed and the 

principle of adaptive rescaling for information maximization. 

Adaptation of the contrast response functions

We have shown earlier (see Fig.4) that for the static model, the contrast response functions (I/O 

curve) for various mean contrast levels σc are invariant. We now proceed to investigate the contrast 

response function in the adaptive LN model for the same setting. Can adaptive rescaling by βopt in 

the adaptive LN model explain the observed adaptive shift in the contrast response curve as a 

function of the mean contrast? We repeat the computational experiment described in Fig.4a on the 

adaptive LN model. βopt in the model is determined by information maximization based on each 

input mean contrast level. Fig.7a shows that the contrast response functions, i.e., c(t) ~ y(t) curves, 

change their slopes for four different mean contrast levels (σc = 1, 5, 10, and 20 respectively). In a 

log-log plot, this change in slope is manifested as a horizontal shift in the contrast response curve 

(Fig.7b). This behavior is qualitatively similar to the neurophysiological observations (Ohzawa et 

al., 1982,1985; Geisler and Albrecht 1992; Sanchez-Vives et al., 2000; Kohn and Movshon 2003). 

When the input contrast is divided by the mean contrast σc, the contrast response functions become 
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superimposed on top of each other, demonstrating that the adaptation is a divisive effect. Thus, the 

predicted rescaling of the linear kernel based on information maximization can explain the divisive 

contrast response curves observed in a lot of neurophysiological experiments (Ohzawa et al., 

1982,1985; Geisler and Albrecht 1992; Sanchez-Vives et al., 2000; Kohn and Movshon 2003). A 

similar rescaling of input-output relations has also been observed by Brenner et al., (2000) in their 

experiments on H1 neurons of blowfly. Our theoretical results thus demonstrate the underlying 

connection of these experimental findings on contrast gain control from an information theoretical 

prospective. 

[Figure 7 about here.] 

 

DISCUSSION

In this paper, we investigated the basic biophysical causes and the computational principles 

underlying contrast gain control phenomena. We first studied a model that is composed of a linear 

kernel followed by a static nonlinearity, called a linear-nonlinear (LN) model. The LN cascade 

model is an abstraction that captures the essential properties of sensory neurons. The linear kernel 

captures the receptive field, and the static nonlinearity captures the two basic features common to 

all spiking neurons -- response threshold and saturation level. Thus, it is widely used in both 

computational studies and the analysis of neurophysiological data (Meister and Berry, 1999).

Recent theoretical studies (Chander and Chichilnisky 2001; Kim and Rieke 2001; Rieke 2001; 

Schwartz et al., 2002; Pillow and Simoncelli, 2003; Paninski 2003; Yu and Lee 2003) revealed that 

many of the observations from earlier neurophysiological experiments on gain adaptation cannot 

cleanly decompose the effect due to the static nonlinearity and the effect due to adaptive adjustment 
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of the underlying parameters of the system. Here, we isolated the gain tuning effect of static 

nonlinearity through theoretical analysis and simulation to understand which aspects of the gain 

control phenomena can be explained by static nonlinearity and which aspects have to be addressed 

by additional mechanisms.  Our results show that static nonlinearity alone can produce gain tuning 

and information tuning as a function of input variance. This tuning effect is indeed belongs to the 

coherence resonance (CR) phenomena observed in various physical, chemical and biological 

systems (Gammaitoni et al., 1998). A common feature of CR is that the coherence measure or 

response property in the output of a complex system can be maximized by the fluctuating signal 

with optimal variance. Our results provide a basic framework for the CR phenomenon in a static 

nonlinear system. That is, for any system with threshold and saturation, their information coding 

properties can potentially display a CR phenomenon. In the discovering the adaptive behaviors of 

the sensory systems, we should factor out components of gain modification due to the CR from the 

real adaptive mechanisms. 

Recent studies (Truchard et al., 2000; Chander and Chichilnisky 2001) suggested that the adaptive 

behaviors in contrast gain control experiments can be simply modeled by an adaptive linear kernel 

cascaded with a static nonlinearity. The effective gain of the linear kernel and the contrast of the 

input signals exhibit an interesting power law relationship. However, the underlying reasons for 

this behavior of the linear kernel, and the relationship between the kernel adaptation and 

information transmission are not clear. Here, we investigated the hypothesis that the adaptive linear 

rescaling is governed by the principle of information maximization.  For any signal with a given 

variance, the linear kernel amplitude can be adjusted to an optimal level by an adaptive mechanism 

so that the information transmission is maximized. This model is successful in reproducing three 
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important phenomena observed in previous experiments related to contrast gain control: 1) the 

logarithmic decay of the linear kernel gain with the input contrast (Smirnakis et al., 1997; Truchard 

et al., 2000; Chander and Chichilnisky 2001); 2) the divisive adjustment of the contrast response 

functions in adaptation to different mean contrast levels (Ohzawa et al., 1982,1985; Geisler and 

Albrecht 1992; Sanchez-Vives et al., 2000; Kohn and Movshon 2003); 3) the rescaling input/output 

relationship (Brenner, et al., 2000; Fairhall et al., 2001) for maximal information transmission, as 

well as the invariant information transmission for various input contrasts (Fairhall et al., 2001). Our 

theoretical work therefore provides a coherent framework for understanding why the various 

experimental observations listed above are in fact evidences in support of the proposal that contrast 

gain control is a mechanism for information maximization.  

The principle of information maximization has been proposed in various theoretical frameworks for 

reasoning about sensory neuronal receptive field development (Linsker 1991; Atick and Redlich 

1992; Olshausen and Field 1996; Bell and Sejnowski 1997; Adorjan et al., 1999; Wainwright 1999), 

contrast adaptation in retinal ganglian cells (Atick and Redlich 1992), contrast gain control by 

normalization mechanisms in the primary visual cortex (Schwartz and Simocelli, 2001), and been 

hypothesized to play a role in the adaptive rescaling of the input-output functions in fly H1 neurons 

(Brenner, et al., 2000; Fairhall et al., 2001). Our contribution lies in providing a theoretical 

framework, with a simple model, to illuminate how effective gain control due to static nonlinearity 

can be factored out, and how the variety of observed phenomena related to contrast gain control can 

be reduced to an adaptive rescaling mechanism dictated by the principle of information 

maximization. Therefore, our work unifies the understanding of all these phenomena by a common 

design purpose and principle, and provides a theoretical framework for future experimental design 
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and data analysis in contrast gain control study. 

It is important, however, to note that there are elements of gain control phenomena that are not 

explained by the information-maximizing adaptive LN model discussed here. For example, the 

linear kernel has been found to dilate or contract in time during dark or light adaptation, resulting in 

a change in the temporal frequency tuning of the neurons (Shapley and Victor, 1978,1979,1980). 

These effects can arise from dynamic change in the parameters of the system, such as the time 

constants (Pillow et al., 2003), active ion-channels (Sanchez-Vives et al., 2000; Rieke, 2001; Kim 

and Rieke, 2001,2003), or the stochastic bifurcation dynamics of a more complex neuronal model 

neuronal model (Yu and Lee 2003) and cannot be accounted for by the current adaptive LN model. 

Another widely observed phenomenon that cannot be explained by the simple adaptive LN model 

is the decrease of response gain or response saturation level, which might be related to long-term 

adaptation process (tens of seconds) (Geisler and Albrecht 1992; Sanchez-Vives et al., 2000; Kohn 

and Movshon 2003). Further model investigation may need to involve a firing rate adaptation 

process (Wilson and Humanski 1993; Smirnakis et al., 1997; Sanchez-Vives et al., 2000). 

What biophysical processes are responsible for mediating the adaptive rescaling proposed in our 

model remains an open question. Recent works on the biophysical mechanisms of contrast gain 

control have revealed many possible mechanisms (Heeger, 1992; Carandini et al., 1997; Holt and 

Koch 1997; Abbott et al., 1997; Chance et al., 2002; Prescott and Koninck 2003) for mediating 

some basic contrast gain control phenomena such as the divisive shift in input-output relations. 

Biophysically, a single neuron itself is a circuit, whose transfer function is controlled by the ionic 

conductances and capacitances. A recent study by Stemmler and Koch (1999) has demonstrated 
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that how the voltage dependence conductances of neurons can be adaptively adjusted to maximize 

the information encoding for various inputs. The changing in conductances indeed reflects changes 

in transfer function. In fact, numerous biophysical factors have been implicated in 

neurophysiological experiments or conjectured in computational models, which may relate to 

adapting transfer functions of the sensory neurons. They include the activation of the Na+-activated 

and Ca2+-activated K+ currents inside single neurons (Sanchez-Vives et al., 2000; Rieke 2001; Kim 

and Rieke 2003; Bacccus and Meister 2003), normalization process (Heeger, 1992; Schwartz and 

Simoncelli 2001), synaptic depression (Abbott et al., 1997; Adorjan et al., 1999), background 

excitation and inhibitory synaptic modulation (Chance et al., 2002; Prescott and Koninck 2003), 

dendritic adjusting (Prescott and Koninck 2003) and long-term slow adaptation (Ohzawa et al., 

1985; Wilson and Humanski 1993; Smirnakis et al., 1997; Sanchez-Vives et al., 2000). These 

proposals, are concerned primarily with the biophysical and cellular implementation of gain 

control. While the exact mechanisms and implementations of contrast gain control depend highly 

on the specific systems, organisms and cellular networks, they might all be subjected to the same 

set of computational principles and purpose. Our work provides insight and understanding on 

contrast gain control at the computational theoretic and algorithmic levels. It reveals that 

information maximization might be a central design principle governing the operation of the 

adaptive nervous systems. 
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FIGURE CAPTIONS

Figure 1

(a) The static LN model is consisted of a linear filter h(t) followed by a static nonlinearity g(.). x(t)

is the response the linear filter, produced by convolving input s(t) with the filter transfer function

h(t). The nonlinearity g(.) acts on x(t) to generate the system response y(t). (b) The adaptive LN 
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model is consisted of a linear filter h(t) followed by a nonlinearity g(.); the amplitude of the linear 

filter h(t) is controlled by a rescaling factor β, which acts as an adaptive mechanism. 

Figure 2

Effective gain of the static LN model. (a) Effective kernels for a LN model with threshold θ = 3 and 

saturation η = 50 recovered from input stimuli of different σ. (b) Effective gain α is a function of σ, 

exhibiting a gain tuning curve. This tuning curve is predicted by the theoretical analysis, and is 

confirmed by the simulation results. (c) The σ where α reaches maximum is called σopt. σopt

increases linearly with saturation level η for different threshold values (θ = 3, 6 and 10). (d) For 

fixed saturation levels (η = 50, 100 and 200), σopt increases monotonically, but not linearly, with 

threshold θ. 

Figure 3

Effective nonlinearity of the static LN model (with θ = 3 and η = 50). (a) Effective nonlinearity is 

expressed as the relationship between the response of the linear kernel x'(t), and the system output 

y(t). The recovered nonlinearities change with σ. (b) However, when x'(t) is divided by the effective 

gain α, the effective nonlinearity becomes invariant, indicating that the static nonlinearity is not 

changed, and that the only change in the system is in the adjustment in the effective gain of the 

linear kernel brought about by the nonlinearity. 

Figure 4

Contrast response function for the static LN model with θ = 5 and η = 50. (a) An example of an 

input contrast signal with sinewave modulation (temporal sine frequency is 10 Hz). The input 
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contrast signal c(t) (magnitude of the the sinewave) changes every 4 seconds. The standard 

deviation of the contrast levels for this sequence is σc = 1. (b) Contrast response functions obtained 

from input contrast signals of mean contrast σc = 1, 5, 10 and 20 respectively. They are apparently 

independent of the mean contrasts.

Figure 5

(a) Mutual information Im as a function of input σ for four different sets of thresholds and saturation 

levels. (b) Im(σ, θ) as a function of α(σ, θ) for various values of η. Each point corresponds to a value 

of α(σ, θ) and a value of Im(σ, θ). 

Figure 6

(a) Mutual information Im varies with input standard deviation σ in the static LN model (threshold θ

= 0 and saturation η = 50) but is kept at maximum rate by choosing the appropriate βopt for each σ

in the adaptive LN model. (b) Im is maintained at the maximum level for various θ and η. (c) The 

amplitude of the recovered kernel γ follows an inverse power-law relationship with input σ.  (d) 

Experimental data by Truchard et al. (2000) shows that monocular gain decreases with stimulus 

contrast (from 2.5% to 50%) for two recorded cells. They are close to the inverse power-law 

relationship (shown for comparison as the dash line with slope of -1).  

Figure 7

Contrast response functions or input and output curves for the adaptive LN model (θ = 5 and η = 

50). (a) The input and output curves, i.e., c(t) ~ y(t), recovered from input contrast signals c(t) and 

output y(t) of the whole system. Four classes of contrast signals are used, which noted by their 
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standard deviations σc = 1, 3, 5, and 10 respectively. Here, different standard deviations represent 

different mean contrast levels. The stimuli are same as described in Figure 4. The contrast response 

function is no longer invariant to σc, but becomes flatter (divisive effect) with increase in σc. (b) 

The adaptation effect is manifested as the shifting of the contrast response function as a function of 

the mean contrast along the log contrast axis. (c) This adaptive shift is a divisive effect, as the 

contrast response functions collapse together when the contrast axis is scaled (divided) by the mean 

contrast.
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