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Abstract

It is possible to learn multiple layers of non-linear features by backpropagating error derivatives

through a feedforward neural network. This is a very effective learning procedure when there is a

huge amount of labeled training data, but for many learning tasks very few labeled examples are

available. In an effort to overcome the need for labeled data, several different generative models

were developed that learned interesting features by modeling the higher order statistical structure

of a set of input vectors. One of these generative models, the restricted Boltzmann machine

(RBM), has no connections between its hidden units and this makes perceptual inference and

learning much simpler. More significantly, after a layer of hidden features has been learned, the

activities of these features can be used as training data for another RBM. By applying this idea

recursively, it is possible to learn a deep hierarchy of progressively more complicated features

without requiring any labeled data. This deep hierarchy can then be treated as a feedforward neu-

ral network which can be discriminatively fine-tuned using backpropagation. Using a stack of

RBMs to initialize the weights of a feedforward neural network allows backpropagation to work

effectively in much deeper networks and it leads to much better generalization. A stack of RBMs

can also be used to initialize a deep Boltzmann machine that has many hidden layers. Combining

this initialization method with a new method for fine-tuning the weights finally leads to the first

efficient way of training Boltzmann machines with many hidden layers and millions of weights.

Keywords: Backpropagation; Boltzmann machines; Learning features; Learning graphical models;
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1. Introduction

The shape of an object, the layout of a scene, the sense of a word, and the meaning of

a sentence must all be represented as spatio-temporal patterns of neural activity. The sim-

plest way to represent things with neurons is to activate a single neuron in a large pool

that contains one neuron for each possible thing that might need to be represented. This
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is obviously hopeless for the meaning of a sentence or the layout of a scene and it is

fairly implausible for the shape of an object or the sense of a word. The alternative is to

use a distributed representation in which each entity is represented by activity in many

neurons and each neuron is involved in the representation of many different entities. If

we model a neuron as a binary device that emits 1 or 0 spikes during a short time win-

dow, and if we assume that the precise time of a spike within the window is irrelevant, a

distributed representation is just a set of binary features.1 If we model a neuron as a

device that can output an approximate real number,2 a distributed representation can be a

set of noisy, real-valued features. Either way, a central question for both Psychology and

Neuroscience is “Where do these features come from?”

First, we must dispose of the idea that features are innately specified. There are several

reasons why this idea fails:

1. We have about 1014 synapses. Even if we treat these as binary and even if we only

make use of 1% of their storage capacity to define all of the features we use, we

still need to specify 1012 bits. There is no hope of packing this much information

into our genes.

2. The world changes much too fast for innately specified features to keep up. If I tell

you that she scromed him with the frying pan, you immediately have quite a large

number of features for the word “scromed.” Innately specified detectors for long

wriggly things or for a red dot between two almost parallel lines may be a good

way to avoid venomous snakes or to get a mother gull to regurgitate food, but for

almost all of the perceptual and cognitive tasks for which features are useful, wired-

in features cannot adapt nearly fast enough.

3. Evolution is much too slow to discover the millions of features we need. In very

high-dimensional spaces, searches that have efficient access to gradient information

are millions of times faster than searches that do not.3 Evolution can optimize hun-

dreds or even thousands of parameters, but it is hopelessly inefficient for optimizing

millions of parameters because it cannot compute the gradient of the fitness of the

phenotype with respect to heritable parameters. What evolution can do is explore

the space of biological devices that can make effective use of gradient information.

It can also explore the space of objective functions that these devices should opti-

mize and the space of architectures in which this optimization works well.

There are several different ways to approach the question of what objective functions

are being optimized by the brain and how it computes the gradients of these objective

functions with respect to properties of synapses. We can investigate people’s learning

abilities without worrying about the hardware (Tenenbaum, Griffiths, & Kemp, 2006), we

can investigate how real synapses change (Markram, Joachim, Frotscher, & Sakmann,

1997), or we can explore the space of synaptic learning rules that work well in large net-

works of neuron-like processors. Given enough computational power, we might even use

an evolutionary outer loop to explore this space (Yao, 1999). These approaches are com-

plementary and clearly need to be pursued in parallel. It is impossible to know in advance

whether the biologically unrealistic assumptions of a particular type of model neuron will
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prevent us from learning anything biologically relevant by studying how to get networks

of those neurons to learn complex tasks. Similarly, it is impossible to know in advance

whether neuroscience experiments to test computationally infeasible theories of learning

will tell us anything interesting about how learning really occurs in the brain.

My approach is to try to find learning procedures that work really well for learning

things that people are obviously very good at. Provided these procedures can run in neu-

ron-like hardware, they should provide biologists with a much more sensible space of

hypotheses. Most intuitively, plausible learning procedures do not actually work very well

in practice, particularly in large networks, and they can be filtered out without invading

any real brains.

2. Learning distributed representations in 1986

In the mid-1980s, there were two exciting new algorithms for learning non-linear dis-

tributed representations in multiple layers of hidden units. Back-propagation (LeCun,

1985; Rumelhart, Hinton, & Williams, 1986b; Werbos, 1974) was a straightforward appli-

cation of the chain rule for computing gradients in a deterministic feed-forward network

(see Fig. 1). It looked pretty implausible as a model of learning in cortex because it

required a lot of labeled training data. Some people thought it was also implausible

because the “neurons” needed to send two quite different signals, one during the forward

pass to communicate activities and one during the backward pass to communicate error-

derivatives. Evolution, however, can produce teeth and eyeballs from the same stem cells,

Fig. 1. A feedforward neural network containing two hidden layers. The network maps input vectors to

predicted output vectors in a forward pass. The incoming weights to each hidden or output unit are learned

gradually by changing them in the direction that reduces the discrepancy between the predicted output and

the correct output, averaged over a set of training cases. For each training case, the effect of changing a

weight on the discrepancy is computed using the chain rule to backpropagate error derivatives from one layer

to the previous layer. The incoming weights of each hidden unit determine how it responds to patterns of

activity in the layer below and different hidden units tend to discover different features that are useful for

predicting the correct output.
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so it is hard to believe that it could fail to find a way to implement back-propagation in a

few hundred million years if that was the best thing to do. Getting all of that labeled

training data, however, seemed problematic.

The most promising suggestion for getting “labels” was to make the desired ouput of

the neural network be a reconstruction of all or part of the input. For static data, this

amounted to learning a deep auto-encoder (Hinton, 1989). Unfortunately, in the last cen-

tury, nobody could get deep auto-encoders to work significantly better than Principal

Components Analysis (DeMers & Cottrell, 1993; Hecht-Nielsen, 1995). For dynamic

data, the most natural way to reconstruct the input data was to predict the next frame of

data (Elman, 1990), but attempts to apply backpropagation-through-time to learning

sequential data failed because the gradients grew or shrank multiplicatively at each time

step (Bengio, Simard, & Frasconi, 1994). We now have good ways of dealing with this

problem (Hochreiter & Schmidhuber, 1997; Martens, 2010), but back in the 1980s, the

best we could do was to castrate backpropagation-through-time by throwing away the

most interesting part of the gradient.

Given a large enough supply of class labels, back-propagation did learn to solve a

number of difficult problems, especially when weight-sharing over time or space was

used to implement prior knowledge about invariances (LeCun, Bottou, Bengio, & Haff-

ner, 1998; Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989). Without weight-sharing,

however, it was hard to get backpropagation to make good use of multiple hidden layers

and it failed to live up to the extremely high expectations we had for it in 1986. In partic-

ular, the hope that backpropagation-through-time could learn to solve complex problems

by creating a myriad of small sequential “programs” and dynamically routing their out-

puts to the right places was never realized.

In 1995, Radford Neal (1994) showed that for modest-sized training sets, feedforward

neural nets with one hidden layer generalized much better if the gradient produced by

backpropagation was used to wander through the space of possible weights like a heavy

particle on a bumpy error surface. The particle tends to head in a downhill direction gath-

ering momentum, but this momentum is occasionally discarded and replaced by a random

kick. Every so often, the set of weights corresponding to the current position of the parti-

cle is saved and predictions on test data are made by averaging the outputs produced by

all of the different networks that use all of these different saved, weight vectors. Neal

also showed that as the number of hidden units goes to infinity and the amount of

weight-decay4 on their outgoing connections also increases appropriately, his stochastic

method of sampling from the space of good models becomes equivalent to a method

known as “Gaussian Processes.” The predictions of a Gaussian Process model can be

computed in a more direct way (Rasmussen & Williams, 2006), so from an engineering

perspective, there is not much point using backpropagation with one hidden layer for

modest-sized problems (MacKay, 2003). In the machine learning community, backpropa-

gation went out of fashion. Retrospectively, it is fairly clear that this happened because

the amount of labeled data and the computational resources available at the time were

insufficient to make good use of the enormous modeling potential of multiple layers of

non-linear features.
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The other exciting new learning algorithm in the mid-1980s (Hinton & Sejnowski,

1986) was quite different in nature. It did not work in practice, but theoretically it was

much more interesting. From the outset, it was designed to learn binary distributed repre-

sentations that captured the statistical structure implicit in a set of binary vectors, so it

did not need labeled data. A more insightful way to say this is that it treated each train-

ing case as a vector of desired outputs of a stochastic generative model, so the training

data consisted entirely of high-dimensional labels and what was missing was the inputs.

The network, called a Boltzmann machine, contained a set of binary stochastic visible

units which could be clamped to a training vector and a set of binary stochastic hidden

units which learned to represent higher order features of the data, typically ones that

occurred more often than would be expected by chance. Any unit could be connected to

any other unit and all of the connections were symmetric. In the vision and statistics lit-

eratures, this is now known as a partially observed, inhomogeneous, Markov Random

Field, or an undirected graphical model. Boltzmann machines can also be used to learn

the distribution of the outputs given an input vector. This conditional form of the Boltz-

mann machine allows it to perform the same tasks as a feedforward neural network

trained with backpropagation, but with the added advantage that it can model correlations

between the outputs. Given a particular input vector, for example, a conditional Boltz-

mann machine can assign high probabilities to the output vectors (1,1) and (0,0) and low

probabilities to (1,0) and (0,1). A feedforward neural network cannot do this. In the

machine learning literature, this is known as a conditional random field, though most

CRFs used in machine learning do not have hidden units so they cannot learn their own

features.

After the weights on the connections have been learned, a Boltzmann machine can be

made to perform perceptual inference by clamping a datavector on the visible units and

then repeatedly updating the hidden units, one at a time, by turning on each binary hid-

den unit with a probability that is a logistic function of the total input it receives from all

the other visible and hidden units (plus its own bias). After a sufficient length of time,

the hidden vectors will be samples from the “stationary distribution” so any particular

hidden vector will occur with a fixed probability that depends on how compatible it is

with the datavector but does not depend on the initial pattern of hidden activities. Hidden

vectors that occur with high probability in the stationary distribution are good representa-

tions of that datavector, at least according to the current model.

Another computation that a trained Boltzmann machine can perform is to generate visi-

ble vectors with a probability that equals the probability that the model assigns to those

vectors. This is done using exactly the same process as is used for perceptual inference,

but with the visible units also being updated. It may, however, take a very long time

before the network reaches its stationary distribution because this distribution usually

needs to be highly multi-modal to represent interesting data distributions well. Many

interesting distributions have the property that there are exponentially many modes, each

of which has about the same probability, separated by regions of much lower probability.

The modes correspond to things that might plausibly occur and the regions between

nodes correspond to extremely unlikely things.
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The third and most interesting computation that a Boltzmann machine can perform is

to update the weights on the connections in such a way that it is probably slightly more

likely to generate all of the datavectors in the training set. Although this is a slow pro-

cess, it is mathematically very simple and only uses information that is locally available.

First, the inference process is run on a representative mini-batch of the training data and,

for each pair of connected units, the expected product of their binary activities is sam-

pled. The same computation is then performed when the Boltzmann machine is generat-

ing visible vectors from its stationary distribution. The weight update is then proportional

to the difference of the expected products during inference and generation. This differ-

ence is an unbiased estimate of the gradient of the sum of the log probabilities of gener-

ating the training data. It is surprising that the learning rule is this simple because the

local gradient depends on all the other weights in the network. The most attractive aspect

of Boltzmann machines is that everything a connection needs to know about the weights

on other connections is contained in the difference of its expected activity products dur-

ing inference and generation. Instead of requiring a backward pass which explicitly prop-

agates information about gradients, the Boltzmann machine only requires the same

computation to be performed twice, once with the visible units clamped to data and once

without clamping. It does not require the neurons to communicate two quite different

types of information.

Generating data from its model in order to collect the statistics required for learning

would interrupt the processing of incoming information, so it is tempting to consider the

possibility that this occurs at night during REM sleep (Crick & Mitchison, 1986). At first

sight, this seems computationally awkward since it would only allow one weight update

per day, but there is a more plausible version of this idea. During the night, generation

from the model is used to estimate a baseline for the expected product of two activities.

Then during the day, weights are raised when the product exceeds this baseline and low-

ered when it falls below the baseline. This allows many weight updates per day. Though

as the day progresses the learning would get less and less accurate.

From a Cognitive Science perspective, Boltzmann machines, if they could be made to

work, would be interesting because they would exhibit multi-stability (as in the Necker

cube illusion) and top-down effects during perceptual inference (McClelland & Rumelhart,

1981). They would also have a tendency toward hallucinations if the input was disrupted,

as in Claude Bonnet syndrome (Reichert, Series, & Storkey, 2010). Unfortunately, with a

lot of hidden units and unconstrained connectivity, Boltzmann machines trained with the

algorithm described above learn extremely slowly. They need a very small learning rate to

average away all of the noise caused by the stochastic sampling of the pairwise statistics,

and they need to be run for an extremely long time in the generative phase to get unbiased

samples. In 1980s, therefore, they could only be used for toy tasks. Terry Sejnowski (pers.

comm., 1985) believed that the best hope for learning large Boltzmann machines was to

find some way of learning smaller modules independently, but we had no idea how to do

this. The solution to this problem eventually presented itself after two decades of meander-

ing through the space of unsupervised learning algorithms that learn distributed representa-

tions in networks of neuron-like processing units.
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3. Directed versus undirected graphical models

“Graphical Models” is the name of a branch of Statistics and Artificial Intelligence that

deals with probabilistic models whose parameters typically have a local structure that can

be depicted by using a graph that is not fully connected. Missing interactions are depicted

by missing edges in the graph which is a very efficient representation when nearly all of

the possible interactions are missing. Graphical models come in two main flavors, direc-

ted and undirected.

In an undirected graphical model, like a Boltzmann machine, the parameters (i.e., the

weights and biases) determine the “energy” of a joint configuration (a set of binary values

for all of the observed and unobserved variables). Boltzmann machines use the Hopfield

energy, which is defined as the negative of the “harmony.” The harmony is the sum over

all active units of their biases, plus the sum over all pairs of active units of the weight

between them. The probability of a joint configuration is then determined by its energy

relative to other joint configurations using the Boltzmann distribution:

pðv; hÞ ¼ e�Eðv;hÞ
P

v0;h0 e
�Eðv0;h0Þ ð1Þ

The inference phase of the Boltzmann machine learning rule computes the data-depen-

dent statistics needed to lower the energies of joint configurations that contain datavectors

on the visible units. The generative phase computes the data-independent statistics needed

to raise the energies of all joint configurations in proportion to how often they occur

according to the current model. This makes the data more probable by decreasing the

divisor in (1).

Directed graphical models work in a quite different way. In a directed graphical model,

the variables have an ancestral partial ordering. When the model is generating data, the

probability distribution for each variable only depends on its “parents”—directly con-

nected variables that come earlier in the ordering. So to generate an unbiased sample

from the model, we start by sampling the values of the highest ancestors from their prior

distributions and then sample each lower variable in turn using a probability distribution

that depends on the sampled values of its parents. This dependency can be in the form of

a conditional probability table whose size is exponential in the number of parents, or it

can be a parameterized function that outputs a probability distribution for a descendant

when given the vector of states of its parents. In a Gaussian mixture model, for example,

the discrete choice of Gaussian is the highest level variable and this choice specifies the

mean and covariance of the Gaussian distribution from which the lower level, multi-

dimensional variable is to be sampled when generating from the model.

The simplest examples of directed graphical models with hidden variables are Gaussian

mixture models which have a single discrete hidden variable (the choice of which Gauss-

ian to use) and factor analysis which has a vector of real-valued hidden variables (the

factor values) that are linearly related to the observed data. When generalized to dynamic
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data, these become Hidden Markov Models and Linear Dynamical Systems. All four of

these models have a long history in statistics because they allow tractable inference:

Given an observed datavector, there is an efficient way to compute the exact posterior

distribution over all possible hidden vectors. Efficient inference makes it easy to use mod-

els after they have been learned, and it also makes it easy to learn them using variations

of the EM algorithm (Dempster, Laird, & Rubin, 1977).

In the 1980s, researchers in Artificial Intelligence who wanted to handle uncertainty in

a principled way developed inference procedures for more complicated directed graphical

models which they called “Bayes Nets” or “Belief Nets.” Initially, they were not particu-

larly interested in learning because they intended to use domain experts to specify the

way in which the probability distribution of each discrete variable depended on the values

of its parents. Judea Pearl (1988) showed how correct inference could be performed by

sending simple messages along the edges of a directed graph, provided there was only

one path between any two nodes. His “belief propagation” algorithm can be viewed as a

generalization of the well-known “forward–backward” inference algorithm for Hidden

Markov Models (Baum, 1972). Heckerman (1986) showed that expert systems worked

better if they used a proper inference procedure instead of ad hoc heuristics and this had

a big effect on the more open-minded members of the Artificial Intelligence community.

At around the same time, the statistics community developed the “junction tree” algo-

rithm for performing correct inference in sparsely connected, directed graphical mod-

els that contained multiple paths between nodes but no directed cycles (Lauritzen &

Spiegelhalter, 1988).

The work on directed graphical models initially had little impact on those in the

connectionist community who wanted to understand how the brain could learn non-linear

distributed representations. The graphical models community was mainly interested in

relatively small models in which the structure of the graph and the way in which each

variable depended on its parents were specified by a domain expert. As a result, the indi-

vidual nodes in the graph could all be interpreted and the directed edges represented

meaningful causal effects in the generative model. In contrast, the connectionist commu-

nity was more interested in getting a large number of units with fairly high connectivity

to learn to model the structure implicit in a large set of training examples, and they were

willing to entertain the possibility that there were many different and equally good solu-

tions and that many of the units would have no simple interpretation.

The two communities became closer when Radford Neal (1992) realized that the sto-

chastic binary units used in a Boltzmann machine could be used instead to make a direc-

ted graphical model, called a “sigmoid belief net,” in which the logistic sigmoid function

r(x)=1/(1+exp(�x)) is used to parameterize the way in which the probability distribution

of a unit depends on the values of its parents. This differs from a Boltzmann machine

because, when the model is generating data, the children have no effect on the parents so

it is possible to generate unbiased samples in a single top-down pass.

Neal implemented a sigmoid belief net with multiple hidden layers and he compared

its learning abilities with those of a Boltzmann machine. The inference procedure for a

sigmoid belief net uses a similar iterative Monte Carlo process to the Boltzmann
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machine, but it is significantly more complicated because each hidden unit needs to see

two different types of information. The first is the current binary states of all its parents

and children and the second is the predicted probability of being on for each child given

the current states of all that child’s parents. The hidden unit then tends to pick whichever

of its two states is the best compromise between fitting in with what its parents predict

for it and ensuring that the predicted state of each of its children fits the current sampled

state of that child.

Once a binary representation of a datavector has been sampled from the posterior dis-

tribution, the learning procedure for a sigmoid belief net is simpler than for a Boltzmann

machine because a sigmoid belief net does not have to deal with the normalizing term

in (1). The learning procedure is simply the delta rule: The sampled binary value of the

“post-synaptic” child is compared with that child’s probability of being on given the

sampled states of its “pre-synaptic” parents. The top-down weights are then updated in

proportion to the value of the parent times the difference between the sampled value of

the child and the probability predicted by the parents. This is a generative version of the

“delta” rule.

Neal showed that a sigmoid belief net learns faster than a Boltzmann machine, though

not by a big factor. Given the extra complexity of the inference procedure, this did not

seem like a good reason to abandon Boltzmann machines as a neural model, but it did

raise the question of whether the inference procedure for a sigmoid belief net could be

simplified.

4. Learning with incorrect inference

Here is an idea that sounds crazy: When given an input vector, instead of sampling the

binary states of the hidden units from the true posterior distribution, which contains com-

plicated correlations, sample them from a much simpler distribution that does not contain

these complicated correlations and is therefore easy to compute. Then, use these sampled

states for learning as if they were samples from the correct distribution. On the face of it,

this is a hopelessly heuristic approach that has no guarantee that the learning will

improve the model. When the hidden states are sampled from the true posterior distribu-

tion, we are guaranteed that the learning will increase the probability that the model

would generate the training data, provided we make a sufficiently large number of suffi-

ciently small updates to the weights. But if we use incorrect samples of hidden state vec-

tors, it is obvious that this guarantee no longer holds. Indeed, we could make the

weight changes go in precisely the wrong direction by choosing the incorrect samples

maliciously.

Using arguments from coding theory and from statistical physics, Radford Neal, Rich-

ard Zemel, and I (Hinton & Zemel, 1994; Neal & Hinton, 1998) were able to show that

learning using incorrect hidden samples is much more sensible than it appears. It does

not necessarily increase the model’s log probability of generating the training data,5 but it

is guaranteed to improve a different quantity that is a lower bound on this log probability.

1086 G. Hinton / Cognitive Science 38 (2014)



For each individual training case, c, this bound is the log probability of generating that

training case minus the divergence, KLðQckPcÞ, between the simplified distribution Qc

from which the hidden state vectors are actually sampled, and the true posterior distribu-

tion Pc from which they ought to have been sampled. When the weights are adjusted to

maximize this bound, one of two things must happen: Either the log probability of the

training data improves or the true posterior distribution, Pc, becomes more similar to the

simplified distribution Qc that is being used to approximate it. So, even though the log

probability can fall, it can only do this by making the posterior distribution much easier

to approximate and this itself is a good thing because it means we have a model in which

a computationally simple way of doing approximate inference works pretty well.

Neal and I wrote a paper about this type of “variational” learning in 1993 and circu-

lated it in the machine learning community but, initially, it had little impact and the Sta-

tistics journal we sent it to rejected it. Our 1993 paper eventually appeared as a chapter

in an edited book on Graphical Models (Neal & Hinton, 1998), and by the late 1990s, the

idea of variational learning had become very popular. It is now very widely used

for learning complicated graphical models in which the true posterior is too difficult to

compute exactly (Jordan, Ghahramani, Jaakkola, & Saul, 1999).

The natural way to apply variational learning to a sigmoid belief net leads to fairly com-

plicated inference and learning procedures (Saul, Jaakkola, & Jordan, 1996) because an

inner loop of iterative optimization is required to find the best approximating distribution

within the class of simplified distributions that are easy to compute. However, Peter Dayan

noticed that if we are willing to make an additional approximation, both inference and

learning become surprisingly simple (Hinton, Dayan, Frey, & Neal, 1995). Given a data-

vector, the best factorial distribution over the hidden units, Q, is the one that minimizes KL
(QkP), where P is the true posterior distribution. If, instead, we train a separate feedfor-

ward neural net to minimize the highly correlated quantity KL(PkQ), we get a very simple

learning procedure called the “wake-sleep” algorithm. Like the Boltzmann machine, this

algorithm has two phases, one in which it is driven by data and one in which it gener-

ates from its model, but here the resemblance ends. During the wake phase, feedforward

“recognition” connections are used to infer an incorrect probability distribution for

each hidden unit given the binary states of the units in the layer below (see Fig. 2). All of

the units within a layer are then given binary states that are sampled independently from

their inferred distributions. This is done one layer at a time, so only binary states need to

be communicated. Given the sampled states of all the units, the top-down “generative”

connections that form the sigmoid belief net can then be learned using the delta rule as

described earlier. During the “sleep” phase, the network simply generates samples from

its model. Since it generated these samples, it knows the correct states of the hidden

units and it can use these states as targets for training the bottom-up recognition connec-

tions, again using the delta rule but with the roles of the pre-synaptic and post-synaptic

units reversed.

The idea that the cortex learns by minimizing variational free energy has recently been

espoused by Friston, Kilner, and Harrison (2006) and is currently one of the many possi-

bilities. As a contribution to machine learning, the wake-sleep algorithm is an interesting
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form of unsupervised learning, but it is rather slow for deep networks that have many

hidden layers and it is not used for practical applications. Esthetically, the use of the

wrong KL divergence for learning, to approximate variational inference is unsatisfying. It

would be much nicer if the recognition connections could perform correct inference for

all of the hidden layers in a single bottom-up pass, but this seemed hopelessly optimistic.

5. Restricted Boltzmann machines

One model that does allow simple, correct inference of distributed non-linear represen-

tations is a “Restricted Boltzmann Machine” (RBM) in which there are no connections

between hidden units and no connections between visible units. When this special case

was suggested by Paul Smolensky (1986), Terry Sejnowski and I thought it was of no

particular interest because we had found the learning algorithm for the general case, and

removing the connections between hidden units clearly made the model much less power-

ful. However, an RBM turned out to be exactly what was needed to divide the task of

learning a deep network into a sequence of much simpler tasks.

In an RBM, the hidden units are conditionally independent given a visible vector, so

unbiased samples of the expected activity products of a visible and a hidden unit during

inference, hvihjidata, can be obtained in one parallel step. To sample the expected products

during generation, hvihjimodel, still requires multiple iterations that alternate between

updating all the hidden units in parallel and updating all of the visible units in parallel.

However, learning still works well if hvihjimodel is replaced by hvihjireconstruction which is

Fig. 2. A multi-layer belief net composed of logistic binary units. To generate fantasies from the model

during the sleep phase, we start by picking a random binary state of 1 or 0 for each top-level unit. Then, we

perform a stochastic downwards pass in which the probability, ĥi, of turning on each unit, i, is determined by

applying the logistic function, r(x)=1/(1+ exp (�x)), to the total input
P

j hjwji that i receives from the units,

j, in the layer above, where hj is the binary state that has already been chosen for unit j. It is easy to give

each unit an additional bias, but this has been omitted for simplicity. rij is a recognition weight that is used

for inferring the activity in one layer from the activities in the layer below during the wake phase using

exactly the same inference procedure as the sleep phase but in the reverse direction.

1088 G. Hinton / Cognitive Science 38 (2014)



obtained as follows: Starting with a data vector, v, on the visible units, update all of the

hidden units in parallel:

pðhj ¼ 1jvÞ ¼ rðbj þ
X

i2vis
viwijÞ ð2Þ

where bj is a bias, wij is the weight between units i and j, and r is the logistic sigmoid

function. Then, update all of the visible units in parallel to get a “reconstruction”:

pðvi ¼ 1jvÞ ¼ rðbi þ
X

j2hid
hjwijÞ ð3Þ

Then, update all of the hidden units again. After averaging the pairwise statistics over

one or more training cases, update the weights in parallel:

Dwij / hvihjidata � hvihjireconstruction ð4Þ

This efficient learning procedure approximates gradient descent in a quantity called

“contrastive divergence” and usually works well in practice (Hinton, 2002).

6. Stacking RBMs to make a deep belief net

Once an RBM has been trained, its weights and biases define a joint distribution p(v,h)
over visible and hidden binary state vectors. They also define p(v), p(h), p(v|h), and p(h|v).
One slightly odd way to express p(v) is in terms of the prior p(h) that the RBM defines

over its hidden states:

pðvÞ ¼
X

h

pðhÞpðvjhÞ ð5Þ

Now suppose we keep the p(v|h) defined by the first RBM, but we replace p(h) in (5) by

the probability distribution that a second RBM defines over its visible units as shown in

Fig. 3. It can be shown that this will improve our model of the original training data if

and only if the second RBM models the first RBMs aggregated posterior distribution over

h better than the first RBMs prior, p(h), models this aggregated posterior.6

It is easy to ensure that the second RBM starts off with a model of the aggregated

posterior that is just as good as the p(h) defined by the first RBM: Simply initialize the

second RBM to be the same as the first one, but turned upside down so that its visible

units are the same as the first RBMs hidden units and vice versa.

After training the second RBM, we can apply the same trick again to improve its

model of the aggregated posterior of the first RBM. After training a stack of RBMs in

this way, we end up with a peculiar kind of composite model called a deep belief net
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(DBN). The top two layers are the final RBM which acts as an undirected, high-level,

associative memory. The remaining layers form a directed belief net because the only

thing we kept from the earlier RBMs was the top-down weights that determine p(v|h). If
we perform bottom-up inference in this DBN by using the weights of the RBMs in the

bottom-up direction, we do not get samples from the true posterior distribution.

(A)

(B)

Fig. 3. (A) Two separate restricted Boltzmann machines (RBMs). The stochastic, binary variables in the

hidden layer of each RBM are symmetrically connected to the stochastic, binary variables in the visible layer.

There are no connections within a layer. The higher level RBM is trained using “data” that consists of the

inferred hidden activities of the lower RBM, when it is presented with real data. (B) The composite genera-

tive model produced by composing the two RBMs. Note that the connections in the lower layer of the com-

posite generative model are directed. The hidden states are still inferred using bottom-up recognition

connections, but these are no longer part of the generative model.
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Nevertheless, it can be shown (Hinton, Osindero, & Teh, 2006) that each time we add

another RBM to the stack we get a new DBN that has a better variational lower bound

on the log probability of the training data than the previous DBN, provided we add the

new RBM in the right way.

7. Fine-tuning a deep belief net

When a DBN has been created by stacking some RBMs, the whole system can be

fine-tuned so that the weights in earlier layers have a chance to adapt to the weights that

were subsequently learned in later layers. Either a generative or a discriminative objective

function can be used for fine-tuning a DBN. Generative fine-tuning maximizes the proba-

bility that the DBN assigns to the training data and can be done using a contrastive ver-

sion of the wake-sleep algorithm. Each connection that is not part of the top-level RBM

is split into a bottom-up recognition connection and a top-down generative connection

and the weights on these two connections are untied so that their values can become

different.

In the “wake” phase of the learning, the units in all the hidden layers are driven bot-

tom-up by the recognition connections. After a bottom-up pass that selects binary states

for all the hidden units, the generative connections are trained to be better at reconstruct-

ing the binary activities in one layer from the binary activities in the layer above. This is

done using the delta rule, as described in section 3. The bottom-up pass is then followed

by a top-down pass that uses the generative connections, but instead of sampling from

the top-level hidden states from the model, it just uses the top-level hidden states pro-

duced by the bottom-up pass. This is the contrastive version of the “sleep” phase. After

the top-down pass, the recognition connections are trained to be better at recovering the

true causes in the layer above, again using the delta rule but with the pre-synaptic and

post-synaptic roles reversed.

During contrastive wake-sleep learning, the connections in the top-level RBM are kept

symmetric and are trained using the usual contrastive divergence learning rule. After fine-

tuning, samples generated from the model look more like the real data. A demonstration

of a model with three hidden layers that has learned to generate images of handwritten

digits can be found at http://www.cs.toronto.edu/ hinton/digits.html.

A very different way to fine-tune a DBN is to add a final layer of labels and to use a

discriminative objective function that maximizes the log probability that the model

assigns to the correct class label. The unsupervised training of the stack of RBMs is

regarded as a “pre-training” phase whose role is to discover good features that model the

structure in the input domain. Many of these features will be irrelevant to any particular

discriminative task, but the ones that are relevant are likely to be much more useful than

the raw inputs because they represent strong higher order correlations in the data that are

probably related to the real causes of the data. These relevant features can be given

strong weights to the label units, and they can also be slightly adjusted to make them

more useful for discrimination. This is done by simply treating the DBN, with its extra
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final layer of labels, as a feedforward neural network and using standard backpropagation.

This makes backpropagation work a whole lot better in deep feedforward networks that

have many hidden layers (Hinton & Salakhutdinov, 2006). For example, DBNs fine-tuned

with backpropagation are now the best speaker-independent method for recognizing pho-

nemes on the benchmark TIMIT test set (Dahl, Ranzato, Mohamed, & Hinton, 2010).

In an extensive set of simulations, Erhan, Bengio, Courville, Manzagol, Vincent, and

Bengio (2010) show that there are two reasons why pre-training a stack of RBMs makes

backpropagation work so much better. The first is that when the hidden units are initial-

ized to sensible features by the pre-training, backpropagation can find better local minima

on the training data. The optimization is much easier because the weights are started in a

good region of the space so backpropagation does not need to design good features from

scratch. It merely needs to slightly adjust the features so that the decision boundaries are

in exactly the right place.

The second reason for the improvement is that the minima found after unsupervised

pre-training give significantly better generalization to the test data. They suffer much less

from overfitting, presumably because most of the information in the learned weights

comes from modeling the input patterns rather than modeling the function that maps from

input to label. The input patterns contain much more information than the labels, so mod-

eling the input can support many more well-determined parameters than modeling the

labels given the input. This is especially important for learning tasks in which there is a

large amount of unlabeled data for pre-training and a relatively small amount of labeled

data for fine-tuning.7

It is a curious twist of fate that the search for an efficient, modular way of training

large Boltzmann machines ended up with a method for making backpropagation work

much better in deep feed-forward neural networks. Sometime later (Salakhutdinov &

Hinton, 2012), Ruslan Salakhutdinov and I discovered a much less obvious way of stack-

ing RBMs to produce a composite model which really is a deep Boltzmann machine

(DBM).

8. Stacking RBMs to make a deep Boltzmann machine

Instead of entirely replacing the prior distribution that an RBM defines over its hidden

units by a distribution defined by the next RBM in the stack, we could take the geometric

mean of these two distributions by using half of the bottom-up weights and half of the

top-down weights. For layers in the middle of a deep stack of RBMs this is easy to do:

We simply learn an RBM and then divide all its weights and biases by two when we

compose the individual RBMs in the stack to make a deep Boltzmann machine. For the

first RBM in the stack, we need to halve its bottom-up weights, but not its top-down

weights, and we need to end up with symmetric weights. So we train this RBM with a

constraint that bottom-up the weights are twice the top-down weights. This is no longer a

proper RBM, but contrastive divergence training still works well. Conversely, for the last

RBM in the stack, we can constrain the top-down weights to be twice the bottom-up
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weights during the pre-training or we can use two sets of hidden units with tied weight

matrices and discard one of these sets when we add it to the final deep Boltzmann

machine.

9. Fine-tuning a deep Boltzmann machine

After a deep Boltzmann machine has been composed out of RBMs, it is possible to

train all of the weights together to improve the generative model. The correct maximum

likelihood way to update the weight on the symmetric connection between two units is to

use the difference between the expected activity products during inference and generation.

However, with many hidden layers, it is very difficult to sample the activity products

from the true posterior distribution, so instead of performing correct inference, we resort

to a variational approximation which uses a much simpler distribution in which the hid-

den activities are assumed to be independent given the datavector. The fine-tuning is,

therefore, only optimizing a variational lower bound on the log probability of generating

the training data.

For estimating the expectations of the activity products when generating from the

model, it is not permissable to use a variational approximation because these products

contribute a negative term to the gradient. As a consequence, if a variational approxima-

tion is used for the generative expectations, instead of adjusting the weights to make the

variational bound tighter, the learning tries to make the bound as loose as possible, which

is very bad news. Ruslan Salakhutdinov realized that this problem can be solved by esti-

mating the generative expectations using a set of persistent Markov chains whose states

are updated after each weight update (Neal, 1992). This means that we need to remember

the binary states of all of the units for each persistent chain.8

If the generative model has many different modes that are widely separated, which is

what is required for many applications, one would expect that a very large number of

persistent chains would be needed to correctly average the activity products over all the

different modes. In practice, however, a small number of persistent chains works very

well. This is because the activity products contributed by these chains are used for

unlearning the model’s own beliefs. So, the energy landscape is modified to raise the

energy of whatever state a persistent chain is currently in Tieleman (2008) and Tieleman

and Hinton (2009). This causes the chain to rapidly move to another part of the energy

landscape. If any chain is stuck in a deep energy minimum that does not contain any

training data, the learning will quickly raise the energy of this minimum until the chain

escapes. The learning, therefore, causes the states of the chains to move around much fas-

ter than they would with the learning turned off—a very fortuitous phenomenon that

makes it possible to fine-tune deep Boltzmann machines with many hidden layers and

millions of weights (Salakhutdinov & Hinton, 2012).

It is tempting to also use persistent chains for estimating the data-dependent statistics,

and this works well for small data sets (Neal, 1992). For large data sets, however, it is

much more efficient to update the weights after a small minibatch of training cases and
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this means that the weights have typically changed by a lot before we revisit the same

training case. Consequently, the persistent chain for that training case is no longer any-

where near its stationary distribution given the current weights.

10. Summary of the main story

In about 1986, backpropagation replaced the Boltzmann machine learning algorithm as

the method of choice for learning distributed representations. This article has described

three developments, enumerated below, in methods for learning stochastic generative

models. These three methods resulted in a very good way to initialize the weights of

deterministic feedforward neural networks. With this initialization, backpropagation works

much better.

The weights of a deep Boltzmann machine can also be initialized in a similar way,

and a fourth development then allows deep Boltzmann machines to be fine-tuned as a

generative model. After 25 years, this finally makes it possible to learn large, deep Boltz-

mann machines.

1. Variational learning: With the advent of graphical models, it became obvious that

the stochastic binary variables used in the Boltzmann machine could be used in

directed generative models—sigmoid belief nets—and this revived interest in sto-

chastic neural nets. For these directed nets, learning is easy if the hidden states can

be sampled from their posterior distribution, but sampling from this distribution is

infeasible in large and densely connected networks. Surprisingly, learning still works

pretty well if we sample the hidden states from a much simpler distribution, because

the learning optimizes a variational bound on the log probability of generating the

data. Optimizing this bound changes the weights to achieve a compromise between

two goals: maximize the probability of generating the training data and make the

true posterior be as similar as possible to the type of simple distribution that is being

used to approximate it.

2. Contrastive divergence: There is a very simple form of the Boltzmann machine, first

described by Paul Smolensky, in which inference is very easy because the hidden

units really are independent given the data. Learning is still a problem because it

appears to require samples from the model and these are hard to get for undirected

models. Again, the solution is to use the wrong statistics. In this case, the activity

products during generation are replaced by the activity products after reconstructing

the data from the hidden activities. This finally made it possible to learn large Boltz-

mann machines, albeit ones with very restricted connectivity.

3. Forming deep models by stacking RBMs: After learning one RBM, the states of its

hidden units can be used as data to train another RBM. A stack of RBMs learned in

this way is a good way to initialize the weights of a feedforward neural net that is

then fine-tuned with backpropagation. However, the composite generative model

formed by a stack of RBMs is not a multi-layer Boltzmann machine. It is a hybrid
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that has an undirected RBM in its top two layers and a directed belief net in its

lower layers. To compose a multi-layer Boltzmann machine out of RBMs, we need

to average the top-down and bottom-up input that a hidden layer receives from the

two RBMs in the stack that contain that layer. This is different from simply replac-

ing the bottom-up input with the top-down input, which is what happens in the gen-

erative model when RBMs are composed to form a deep belief net.

4. Combining variational learning with persistent Markov chains: Early attempts to find

an effective learning procedure for Boltzmann machines just assumed that the same

method would be used for estimating both the data-dependent and the data-indepen-

dent statistics. Variational methods are no good for the data-independent statistics

and persistent chains are no good for the data-dependent statistics when using small

minibatches and large data sets because the saved state of a persistent chain for a

given mini-batch is completely out of date by the time that mini-batch is revisited.

However, combining variational learning for the data-dependent statistics with per-

sistent chains for the data-independent statistics works well due to an unexpected

interaction: In addition to trying to make the variational approximation tight,

the learning makes the persistent chains move around the space rapidly. For deep

Boltzmann machines that have already been pre-trained, this combination is very

effective.

In this article, I have described how two learning procedures from the 1980s evolved

over the next 25 years. I focused on the main ideas that were required to get these learn-

ing procedures to work really well. Other important developments could not be covered.

These include related developments in the types of units that can be used (Nair & Hinton,

2010; Welling, Rosen-Zvi, & Hinton, 2005), the ways they can interact (Hinton, 2010),

the ways they can share weights (Lee, Grosse, Ranganath, & Ng, 2009), and the modifi-

cations that allow these ideas to be applied to sequential data (Taylor, Hinton, & Roweis,

2011). Another important thread has been the development of alternative unsupervised

modules that can be used to replace RBMs in the pre-training phase. These include deno-

ising and contractive auto-encoder modules developed by Yoshua Bengio’s group (Rifai,

Vincent, Muller, Glorot, & Bengio, 2011; Vincent, Larochelle, Lajoie, Bengio, & Manza-

gol, 2010) and sparse energy-based modules developed by Yann LeCun’s group (Ranzato,

Boureau, & LeCun, 2007).

11. A speculation on the future of neural network models

I currently believe that the highly idealized “neurons” used in this article may suffer

from a serious flaw as models of real neurons. They assume that a real cortical neuron

cannot communicate an approximate real value efficiently. Experiments by Markram and

others (Markram et al., 1997) have shown that synaptic learning rules can be exquisitely

sensitive to the precise time of a spike and this casts doubt on the idea that the precise

time of a spike is unreliable and therefore conveys little information. When performing
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signal processing, communicating a 0 or a 1 is not nearly as useful as communicating

either a 0 or the combination of a 1 with a real number that is accurate to within about

10%. It would be very surprising if hundreds of millions of years of evolution had failed

to notice that the precise time of a spike can be used to convey this additional analog

value. For tasks such as sound localization, spike times can be made accurate to within

less than 1 ms, so the only thing that could prevent evolution from exploiting this free

additional bandwidth would be if there was some other very important reason for making

cortical neurons extremely noisy (Buesing, Bill, Nessler, & Maass, 2011).

Of course, for precise spike times to be useful, neurons must be able to compute with

them. I shall therefore sketch out very briefly how this could be done. The method I pro-

pose here is almost certainly wrong in its details, but once you have seen how convenient

it is to use spike times for signal processing you are forced to choose between two possi-

bilities both of which are problematic: Either the brain uses spike times to communicate

analog values, or there is some good reason why it does not need to communicate analog

values.

The first operation I shall consider is comparing some real values to see whether many

of them are approximately equal. This is very hard to do using standard binary, sigmoid

or linear threshold neurons. Even for only two values it is equivalent to solving the

famous XOR problem and requires an extra layer of processing. Using spike times, it is

trivial. We simply use feedforward excitation followed, a few milliseconds later, by feed-

forward inhibition via one or more inhibitory interneurons. To exceed its threshold, the

receiving neuron must receive several excitatory spikes in the same narrow temporal win-

dow before the inhibition arrives. If it does, it has detected that some numbers agree and

it reports the binary existence of this agreement by spiking and the agreed value by the

time of the spike.

The second operation I shall consider is computing a scalar product between a vector

of spike times and a vector of synaptic weights. For simplicity, let us make the gross

assumption that an excitatory post-synaptic potential has a very fast rise time followed by

a rate of injection of charge that is constant over the next 20 ms or so. Let us also

assume that there is a global oscillation and that a particular phase of this oscillation is

called the “deadline.” A spike arriving at a time ti before the deadline will initiate the

injection of charge at a rate of wi. The temporal integral of the injected charge at the

deadline will therefore be the scalar product
P

i tiwi. The multiplies have been computed

by temporal integration and the adds by the addition of charge. We then need to convert

the amount of injected charge into the time advance of an outgoing spike. This can be

done by injecting additional charge at a rate of 1�P
i wi starting at the deadline. The

total rate of injection of charge will then be 1 and the time after the deadline at which

the neuron crosses its threshold will be advanced by exactly the amount of charge that

was already injected by the deadline. So, the scalar product has been computed and con-

verted back into the advance of a spike time in one cycle of the global oscillation.

There are numerous problems with this over-simplified model: EPSPs decay with time,

the rate of injection of charge depends on the membrane potential, incoming spikes after

the deadline need to be blocked, membranes leak, not all numbers are positive, and so
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on. Nevertheless, the combination of temporal integration for computing multiplies,

charge accumulation for computing adds, and an additional clocked input for converting

accumulated charge into the time advance of an outgoing spike seems like a very efficient

way to use a membrane to compute a scalar product.

If precise spike times are being used by cortex, it is rather surprising that there is not

more experimental evidence in their favor. One possible reason is that experimentalists

have been trying to correlate precise spike times with the wrong kind of information. In

inferotemporal cortex, for example, the existence of a spike could be used to represent

the presence of an entity of a particular kind, and the precise times of spikes could rep-

resent the pose parameters (i.e., the position, orientation, and scale of the entity relative

to the viewer). A scalar product can then be used to predict one of the pose parameters

of a whole from all the pose parameters of a part,9 and if many parts agree a neuron

could use this coincidence to decide that the whole is present, and also to report the

value of the pose parameter. The precise time of a spike would not convey any addi-

tional information about the presence or absence of a visual entity, but it would convey

information about the pose of the entity. This seems worth looking for in inferotemporal

cortex.10

The idea that neurons can communicate approximate real numbers also undermines

one of the main motivations behind coarse coding (Rumelhart, Hinton, & Williams,

1986a). In coarse coding, the six pose parameters of a three-dimensional object (three ori-

entation and three position) are coded using a large number of binary neurons that each

have a large, receptive field in the six-dimensional pose space. The intersection of the

receptive fields of the active neurons can then code the six pose parameters fairly accu-

rately. Indeed, as the receptive fields get larger, the accuracy of the encoding gets better,

so large receptive fields cannot be interpreted as evidence against accurate representations

of pose. This is an ingenious way of using binary neurons, but six numbers is a lot more

economical and is also a lot more useful for the computations required to recognize an

object by recognizing that its parts all predict the same pose for the whole and therefore

have the appropriate spatial relationships to each other, as described in the previous para-

graph. Scalar products of vectors of pose parameters with vectors of weights that describe

spatial relationships are the way that computer graphics deals with viewpoint so effort-

lessly and it makes a lot of sense for the cortex to use the same method. The idea that

vision is inverse graphics (Horn, 1977) may be more than just a guiding principle: It may

be true right down to the level of the matrix multiplies used to relate the poses of wholes

to the poses of their parts.

Notes

1. We shall return to the issue of spike timing at the end of the article.

2. This could be implemented by using a gang of similarly tuned real neurons to

implement each model “neuron” or using a rate code over a much longer time

period.
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3. It is always possible to use a local random search to estimate the gradient but in

spaces with millions of dimensions, this is millions of times slower than methods

like backpropagation that compute the gradient efficiently.

4. Weight-decay keeps the weights small by adding an extra penalty that is propor-

tional to the squared value of the weight. The gradient of the penalty pulls the

weight toward zero.

5. Maximizing the product of the probabilities of generating all of the training cases

is equivalent to maximizing the sum of the log probabilities.

6. The aggregated posterior is the equally weighted mixture of all of the posterior dis-

tributions for the individual training cases. Even though each individual posterior is

factorial, the aggregated posterior is not.

7. This is clearly the situation for a child learning to name familiar objects.

8. Actually, it is sufficient to remember the states of alternate layers.

9. This only works if the pose parameters of the part are represented in a way that

allows spatial relationships to be modeled as matrix multiplies, as is done in com-

puter graphics. A neural network that learns to extract the correct representation of

pose parameters from images is described in Hinton, Krizhevsky, and Wang

(2011).

10. There is evidence that in hippocampal place cells, the phase of a spike relative to

a global oscillation is used to represent the position of the rat within a place field

(O’Keefe & Recce, 1993), that is, a pose parameter.
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