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SUMMARY

Real-world value often depends on subtle, continu-
ously variable visual cues specific to particular object
categories, like the tailoring of a suit, the condition of
an automobile, or the construction of a house. Here,
we used microelectrode recording in behaving mon-
keys to test two possible mechanisms for category-
specific value-cue processing: (1) previous findings
suggest that prefrontal cortex (PFC) identifies object
categories, andbasedoncategory identity, PFCcould
use top-down attentional modulation to enhance
visual processing of category-specific value cues,
providing signals to PFC for calculating value, and (2)
a faster mechanism would be first-pass visual pro-
cessing of category-specific value cues, immediately
providing the necessary visual information to PFC.
This, however, would require learned mechanisms
for processing the appropriate cues in a given object
category. To test these hypotheses, we trained mon-
keys to discriminate value in four letter-like stimulus
categories. Each category had a different, continu-
ously variable shape cue that signified value (liquid
reward amount) as well as other cues that were irrele-
vant. Monkeys chose between stimuli of different
rewardvalues. Consistentwith the first-pass hypothe-
sis, we found early signals for category-specific value
cues inareaTE (thefinal stage inmonkeyventral visual
pathway) beginning 81 ms after stimulus onset—
essentially at the start of TE responses. Task-related
activity emerged in lateral PFC approximately 40 ms
later and consistedmainly of category-invariant value
tuning. Our results show that, for familiar, behaviorally
relevant object categories, high-level ventral pathway
cortex can implement rapid, first-pass processing of
category-specific value cues.

INTRODUCTION

Microelectrode recording studies in behaving macaque mon-

keys and other species have elucidated how value is pro-
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cessed and represented in prefrontal cortex (PFC) [1–13]. In

most of these studies, value levels are arbitrarily assigned to

a small number of discrete, easily distinguished stimuli

through extensive training. In real life, however, object values

often depend on subtle, continuously varying visual informa-

tion that signifies edibility, drinkability, age, material, manufac-

ture, strength, health, and other dimensions of object quality.

Judging this kind of real-world value requires detailed visual

processing usually ascribed to the ventral pathway of visual

cortex [14–18].

This processing would necessarily focus on the specific

visual cues that determine value in a given object category.

(By ‘‘cues,’’ we mean shape features and other visual proper-

ties.) For example, the monetary values of racehorses and

show dogs depend on conformation standards (e.g., size,

shape, and relative position of body parts) that vary between

breeds. Focusing on the correct value cues could depend on

top-down modulation of processing in visual cortex. This would

entail category recognition followed by attentional modulation.

Population activity in later stages of ventral pathway visual

cortex (TE in monkeys) carries sufficient shape information to

discriminate object categories [19] (e.g., the sharp beard, eye-

brows, flopped ears, and short docked tail of a wire fox terrier;

Figure 1A [blue]). TE projects to lateral prefrontal cortex (LPFC),

where explicit signals for familiar object categories can emerge

(e.g., ‘‘wire fox terrier’’) [20–22] (Figure 1B). Following category

identification, top-down attentional modulation [23–27] could

be invoked to select for category-specific value cues (e.g.,

length of snout, curvature of neck, short back; Figure 1A

[yellow]). Visual information about value cues would then be

available to PFC for calculating value. This top-down mecha-

nism might be particularly important for judging value in new

or less familiar object categories.

However, for extremely familiar categories, it would be

simpler and faster to process visual value cues in the first

pass of visual information through TE (Figure 1C). This could

make value information available to PFC simultaneously with

category information. It would demand that acquired knowl-

edge of category-specific value cues be incorporated into

category-specific tuning. That is, TE neurons tuned for cate-

gory-diagnostic characteristics (Figure 1A [blue]) would also

be tuned for category-specific value cues (Figure 1A [yellow]).

This might require extensive experience with the object

category (e.g., through training as a show dog judge). It is

important to note that, under both hypotheses, we are not
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A Figure 1. Proposed Mechanisms for

Category-Specific Value Processing

(A) Here, the hypothetical category is ‘‘fox terrier,’’

for which category diagnostic shape cues might

include the sharp beard, eyebrows, flopped ears,

and short docked tail (blue). Desirable shape

qualities (value cues) for a fox terrier include a long

snout, a curved neck, and a short back (yellow).

(B) Top-down. This strategy would concatenate

known neural mechanisms of visual processing,

category recognition, and top-down modulation.

Category-diagnostic visual information from TE,

such as the full beard and short tail, could provide

inputs necessary for categorical recognition in

PFC. Category recognition could invoke top-down

control mechanisms for selective processing of

snout length, neck curvature, and back length. The

resulting category-specific information about fox

terrier conformation could then pass to PFC and/or

other structures involved in calculating value. A

long snout, curved neck, and short back would

produce a high-value signal.

(C) First-pass. This strategy would depend on

learning-induced changes in neural tuning to pro-

cess all the necessary information during the first

pass of visual information through TE. Specifically,

neurons that respond to category-diagnostic cues

(beard, tail) would also be tuned for snout length,

neck curvature, back length, and or other value-

diagnostic shape dimensions. Based on such

information from TE, value information could be

generated immediately in PFC.
suggesting that TE represents value itself, only that it provides

signals for visual cues necessary for downstream computation

of value.

Here, we present evidence that the primate brain can imple-

ment this first-pass strategy (Figure 1C) after behavioral expe-

rience with value (liquid reward) variations signified by shape

cue variations in familiar object categories. We found that in

monkeys performing an object-value comparison task, TE

neurons were sensitive to category-specific value cues from

the very onset of responses. In contrast, neurons in LPFC

did not express task-related information until approximately

40 ms later. While value cue signals in TE were category

specific, most LPFC neurons did not differentiate between

categories; instead, they signaled category-invariant value.

These results demonstrate the possibility of first-pass visual

value cue processing. Conceivably, this is an efficient mecha-

nism by which experts can quickly perceive the value of

real-world objects.
Current B
RESULTS

We trained two monkeys to interpret

reward value in four letter-like object cat-

egories (Figure 2A [rows I–IV]). Like letters

and numerals, these categories were

defined by their medial axis structure—

the relative orientation, position, and

connectivity of elongated limbs. Letters

and numerals are categories in the sense
that their shapes vary widely with font, handwriting, slant, and

orientation, but they remain identifiable by their medial axis

configurations in all cases. (This type of category is distinct

from categories defined by boundaries in continuous spaces or

by arbitrary learned associations.) For example, all the stimuli

in category I had a long stroke to which two shorter orthogonal

strokes were attached on one side, as in the Greek letter pi.

(It has been shown that many TE neurons have clear tuning for

medial axis structure [28].) Also like letters and numerals, the

precise shape (curvature, length, thickness) and orientation of

these stimulus categories could vary. In each category, liquid

reward amount (symbolized by blue dots) was proportional to

the magnitude of a specific shape cue (Figure 2A [left]). In

categories I and II, the cue was the distance between two limbs.

(The relationship between distance and reward was reversed

between the two categories.) In categories III and IV, the cue

was curvature at the junctions between limbs. (The curvature-

to-reward relationship was also reversed between categories.)
iology 28, 538–548, February 19, 2018 539
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Figure 2. Behavioral Task

(A) Stimuli comprised four categories (rows). In each category, liquid reward value (blue dots) was proportional to either the distance between limbs or the

curvature at limb junctions. These were the value-relevant cues (left). In each category, the other cue varied but was irrelevant (right).

(B) Task sequence. After the appearance of a 0.2� diameter fixation point, the monkey was required to fixate within a 1� radius window throughout the trial. After

initiation of fixation, the task stages were as follows: stimulus 1 presentation (600 ms), delay (600 ms), stimulus 2 presentation (600 ms), delay (600 ms),

simultaneous offset of fixation point, and onset of saccade targets. Themonkey was required to saccade to a target within 1 s to receive the liquid reward amount

indicated by either stimulus 1 (blue target) or stimulus 2 (yellow target). Stimuli were generated randomly but balanced for category and reward level. Targets

appeared on opposite sides of the fixation point at a randomized angle.

(C) Behavioral performance. Probability of choosing the reward indicated by stimulus 1 (see color scale) was averaged across 90 training sessions for the first

monkey and 75 training sessions for the second monkey. Reward values are shown in arbitrary units, which equated to a variable amount across sessions,

ranging from 15 to 20 ml. The range of values for stimulus 2 was actually larger (0–12 units, data not shown) to prevent early decisions based on maximum or

minimum values for stimulus 1 (3–9 units). Thus, the maximum reward ranged from 0.18 to 0.24 mL.

See also Figure S1.
The variations in distance and curvature were essentially

continuous (nine steps). Importantly, each category also varied

in ways that were irrelevant to value (Figure 2A [right]). In cate-

gories I and II, curvature variations occurred but were irrelevant,

and in categories III and IV, distance variations occurred but

were irrelevant. Thus, both limb distance and curvature served

as positive cues, negative cues, and irrelevant cues in different

categories, ensuring that the monkeys were required to utilize

the cues in a category-specific manner (and making category

identification essential to the task). In addition to relevant and

irrelevant shape variations, orientation also varied randomly,

producing an effectively infinite range of stimuli. As a result, it

would have been impossible to learn individual stimulus-reward

pairings.

The task (Figure 2B) was a sequential value comparison

task. It began with a 500-ms fixation period, followed by pre-
540 Current Biology 28, 538–548, February 19, 2018
sentation of object 1, which was pseudo-randomly drawn from

the domain of 4 categories 3 9 reward cue levels 3 9 irrele-

vant cue levels 3 orientation. After a delay, a second

pseudo-randomly drawn stimulus was displayed. After

another delay, two targets were displayed on opposite sides

of fixation at a random orientation. Saccading to the blue

target triggered delivery of the reward amount associated

with object 1; saccading to the yellow target triggered the

reward associated with object 2. (The positions of the blue

and yellow targets were randomized to prevent early formation

of a motor plan.) The chosen object was also redisplayed at

the chosen target location to help reinforce shape/reward

learning. One monkey was trained for 9 months prior to

recording experiments and the other for 12 months. (TE was

studied first in both, so additional training occurred prior to

LPFC experiments.) For both monkeys (Figure S1), choice



Figure 3. Responses of Example TE Neurons

(A) TE neuron tuned for large limb distance in category II. Each stimulus used to study this neuron is represented by a white icon. Background color indicates the

time-averaged response rate to the stimulus (see scale bar) based on five repetitions including presentation as both object 1 and object 2. Stimuli are grouped into

categories and arranged from lowest reward value (upper left) to highest (lower right). The shape cue indicating reward value is diagrammed beside each

category. This neuron’s tuning provided potentially useful information about low reward values in category II.

(B) TE neuron tuned for broad curvature in category IV. This tuning provided potentially useful information about high reward values in category IV.

See also Figures S2 and S4.
probability was a steep sigmoidal function of reward value dif-

ference, over a 3-fold range of absolute reward values (Fig-

ure 2C; e.g., dashed rectangle), demonstrating accurate de-

coding of value based on correct application of the shape

variation rules according to category.
TE Neurons Tuned for Category-Specific Value Cues
Figure 3A exemplifies category-specific tuning for reward value

cues in a single TE neuron. In each of the four categories, stimuli

shown during the experiment are arranged from top left to bot-

tom right in order of reward value. Background color indicates
Current Biology 28, 538–548, February 19, 2018 541
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Figure 4. Probability Distributions for Value Cue Tuning in TE

Tuning was measured by the linear correlation (r) between value cue level and

response. Results are shown as absolute r values. Only significant (p < 0.05,

t test) r values are plotted. Frequencies of tuning for limb distance and

curvature are combined. The frequency scale (y axis) shows fraction of tests

out of 310 (2 categories3 155 neurons) for both relevant and irrelevant cues in

each bin. Tuning was stronger in categories where the cue was relevant (black)

in comparison to categories where the cue was irrelevant (gray).
the neuron’s response to each stimulus (averaged across the

600-ms presentation period and 5 repetitions, which included

presentations as both object 1 and object 2; see scale at right).

This neuron was most responsive to category II, in which stimuli

with large limb distances—signifying low reward amounts—

evoked responses around 60 spikes/s. Thus, average respon-

siveness decreased as a function of decreasing limb distance,

which signified increasing value. In contrast, for the second

example TE neuron (Figure 3B), category IV stimuli evoked the

strongest responses, specifically in the rangewhere contour cur-

vature was broad, which signified large reward amounts. Thus, in

this case, average responsiveness increased as a function of

decreasing curvature and increasing value. Given the compara-

tive nature of the task, visual cues associated with both higher

and lower rewards were potentially relevant. Temporal profiles

of value cue tuning in TE are exemplified in Figures S2A–S2C.

In these examples, tuning for limb distance and curvature was

specific to categories in which those cues were relevant to

reward value. Responses were weaker and uncorrelated in cat-

egories where the same cues varied but were irrelevant. This

reflects a strong trend in the population of 155 TE neurons stud-

ied here (Figure 4). For each neuron and in each category, we

calculated the correlation (r) of response rate with both the rele-

vant cue (either limb distance or curvature) and the irrelevant

cue. We used a t test (p < 0.05) to measure significance of corre-

lation. The probability distributions of significant correlations are

plotted in black for relevant cues and gray for irrelevant cues.

Significant correlations were approximately 2-fold more com-

mon for value-relevant cues compared to irrelevant cues.

LPFC Neurons Tuned for Category-Invariant Value
This category-specific tuning for value cues in TE contrasted

with category-invariant tuning, apparently for value itself, in
542 Current Biology 28, 538–548, February 19, 2018
LPFC. Figure 5 shows the stimulus responses of an individual

LPFC neuron. In all four categories, responses were strongest

for the large reward range of shape variations, even though large

rewards were associated with different or opposing shape cues

in each category. This response pattern is consistent with

previously described value-related responses in LPFC [1–6].

Temporal profiles of value tuning in LPFC are exemplified in

Figure S2D.

The example neurons illustrate a consistent difference be-

tween category-specific value cue tuning in TE and category-

invariant value tuning in LPFC. To visualize this difference across

the neural populations, we again used correlation (r) between

response rates and reward value in individual categories. We

plotted each neuron in Figure 6 according to its extreme r values

across the four categories. Maximum absolute r (rmax, the r value

with the largest magnitude, whether positive or negative) is rep-

resented on the horizontal axis. The most different r value

(obtained using the same model) across the remaining three

categories (rmin) is represented on the vertical axis. Neurons

with category-invariant tuning for value itself should appear

near the upper right, showing a consistent positive or negative

value relationship across all four categories (similar rmax and

rmin). Only 5/155 TE neurons showed a consistent, significant

(t test, p < 0.05) relationship across all four categories (filled

circles at upper right in Figure 6A). Most TE neurons had only

weak, non-significant rmin tuning (Figure 6A [open circles]) or sig-

nificant rmin tuning in the opposite direction for another category

(Figure 6A [lower right, filled circles]), meaning responses to

high-value cues in one category and low-value cues in another

category. This is predictable because tuning for either limb dis-

tance or curvature would produce opposite relationships to

value in the two categories where that cuewas relevant, because

the value relationship for each cue was reversed across the two

categories in which it was relevant. An example of this is shown

in Figure S3A. Signals from these neuronswould still be useful for

calculating value in combination with information about category

identity. Category tuning was strong in TE, providing a potential

source of category identity information, while category tuning in

LPFC was weak (Figure S3B).

In contrast to TE, task-related tuning in LPFC was consistently

related to value across categories (Figure 6B). All LPFC neurons

with rmax above 0.5 had similar values across all four categories,

since even the most different value (rmin) was very similar (near

the diagonal) and often still significant (filled circles, 20/125).

Thus, this subpopulation in LPFC carried category-invariant

value signals that could be used to solve the task by comparing

object 1 value with object 2 value, regardless of category, as

required by the task. Because the task design included reversals

of cue-to-value relationships between categories, this consis-

tent value tuning observed in LPFC is necessarily independent

of shape. In contrast, the common reversals in value relation-

ships between categories in TE demonstrates that TE tuning is

based on shape and distinguishable from tuning for value per

se (see First-Pass Value Cue Tuning in TE).

First-Pass Value Cue Tuning in TE
The results presented above demonstrate category-specific

value cue tuning in TE and category-invariant tuning for value

itself in LPFC. The time courses of these signals (Figure 7) are



Figure 5. Responses of Example LPFC Neuron
In each category, this neuron responded more strongly to high-value stimuli. In this earlier experiment, category IV stimuli had a simpler shape, and limb

thicknesses varied, but the value cues were the same.

See also Figure S2.
critical for understanding their roles and interactions in the value

comparison task. For each neuron in the TE and LPFC popula-

tions, we calculated response/value correlations (r) in each

category across time in 1-ms bins (after smoothing and aver-

aging response profiles). For this temporal analysis, we identified

neurons for which r was significant over a continuous period of at

least 50 ms in at least one category (55/155 TE neurons, 42/125

LPFC neurons; t test, p < 0.05, corrected for four comparisons).

Significant correlations between response and value were

roughly evenly split between positive and negative (26/55 TE

neurons and 25/42 LPFC neurons had negative r values). Thus,

value-related tuning in TE and LPFC cannot be explained as

simple attentional enhancement of responses to more rewarding

stimuli. Negative reward tuning could be useful for the reward

comparisons required by the task.

To visualize tuning across time, we used the same rmax and rmin

measures shown in time-averaged form in Figure 6. In Figure 7,

each neuron is plotted as a strip against time (horizontal axis).

Brightness of the strip represents time-varying tuning strength

(correlation between responses and value cue level) in the

neuron’s strongest tuning category (based on rmax; Figure 6

[horizontal axis]). Color represents rmin, the most different

cross-predicted r value from among the remaining three cate-

gories. Red represents cases where rmax and rmin have the

same sign, signifying consistent value tuning across all four

categories, as in the top halves of the Figure 6 plots. Orange rep-

resents cases where rmin is near 0. Green represents cases

where rmax and rmin have opposite signs, as in the bottom halves
of the Figure 6 plots (see scale bar at right), reflecting an incon-

sistent relationship to value across multiple categories. In agree-

ment with Figure 6, most (50/55) TE neurons (Figure 7A [top]) are

in the green to orange range, reflecting category-specific value

cue tuning and no strong, consistent tuning for value itself across

all four categories. Of these neurons, 44/50 exhibited significant

(p < 0.05, corrected for four comparisons) cross-prediction of

shape-tuning models across categories, confirming the shape-

based nature of their task-related tuning (Figure S4). Many

LPFC neurons (Figure 7A [bottom]), in contrast, are in the red

range, consistent with the category-invariant tuning seen in

Figure 6. None of the LPFC neurons in this analysis exhibited

significant cross-prediction of shape-tuning models.

The temporal profiles of task-related signals were consistent

with the first-pass mechanism and inconsistent with the top-

down mechanism. Category-specific tuning for value cues in

TE emerged early, at the start of TE responses. This is apparent

in individual time courses (Figure 7A), as well as in average tuning

across 50 TE neurons (Figure 7B [green curve]; this average ex-

cludes the 5 TE neurons with category-invariant tuning). Average

value cue tuning in TE became significant (continuously greater

than pre-stimulus baseline tuning; one-sided t test, p < 0.05)

81 ms after stimulus onset—essentially at the start of IT re-

sponses, which significantly exceeded baseline (pre-stimulus)

response levels 78 ms after stimulus onset. Average tuning for

value-relevant cues was stronger than tuning for irrelevant

cues (see Figure 4) throughout the response period, from

77 ms onward, and this difference became significant at 92 ms
Current Biology 28, 538–548, February 19, 2018 543
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Figure 6. Category Specificity of Value/

Value Cue Tuning in TE and LPFC

Results for TE and LPFC are shown in (A) and (B),

respectively. For each neuron, correlation be-

tween response strength and value/value cue level

(r) was calculated for each of the four categories

using linear regression. For each neuron, the

largest absolute r value (rmax) out of the four cat-

egories is plotted on the x axis. The same linear

model was then used to predict responses in the

other three categories in order to test for consis-

tency of value tuning across categories. The most

different r value (rmin, correlation between pre-

dicted and observed responses) among the other

three categories is plotted on the y axis. Thus,

positive values on the vertical axis represent

consistent value tuning across all four categories.

Filled circles indicate significant rmin (p < 0.05).

See also Figure S3.
after stimulus onset. (Temporal profiles for all types of tuning in

both areas are presented in Figure S5.)

The immediate emergence of category-specific value cue in-

formation in TE can only be explained in terms of first-pass pro-

cessing based on learning about what defines value in a given

category. Our task design provided no information about value,

category, or relevant value cue prior to stimulus onset, so early

TE responses could not have been affected by pre-existing

top-down signals. Any top-down modulation would necessarily

depend on information derived from the object itself (as required

by our task design) and thus could only affect later processing

given the much longer visual latencies in PFC, orbitofrontal

cortex (OFC), and parietal cortex [5, 29–32]. A fast, alternative

route for visual processing through the amygdala has been

proposed, but even the fastest amygdala responses, to low

spatial frequency components of fearful faces, do not emerge

until �70 ms after stimulus onset [33], and responses to other

stimuli tested so far (to our knowledge) have latencies on the

order of 100 ms or more [33, 34].

Task-related information emerged substantially later in LPFC.

Average category-invariant value tuning in LPFC (Figure 7B, red

curve) became significant 122ms after stimulus onset, a delay of

40 ms relative to category-specific value cue tuning in TE. This

delay is apparent in individual time courses for LPFC neurons.

It is not associated with lower firing rates in LPFC neurons

(Figure S6). It is also apparent for the small number of IT neurons

with category-invariant value tuning, suggesting that such tuning

depended on top-down feedback from LPFC or other value-

processing regions. The 40-ms delay is consistent with the

first-pass model in Figure 1, where category-specific value cue

information from TE supports the subsequent emergence of

category-invariant value signals in LPFC and/or other brain re-

gions that compute generalized value.
544 Current Biology 28, 538–548, February 19, 2018
DISCUSSION

Our results demonstrate that first-pass

visual processing of category-specific

value cues (Figure 1C) can occur after

experience with a small number of object
categories. The much stronger tuning for shape differences that

defined value in a given category, the immediate onset of tuning

for those differences in TE at about 80 ms after stimulus onset,

essentially coincident with response onset, and the subsequent

emergence of general, category-invariant tuning for value itself in

LPFC 40 ms later, are all strongly consistent with a first-pass

mechanism. (Potential sources of top-down modulation in PFC

and parietal cortex do not reflect even simple visual differences

until �125 ms after onset [32]. Visual response latencies in OFC

are also later, with median values in the 120-ms range or higher

[5, 29–31].) Our results are incompatible with the proposed

top-down mechanism (Figure 1B), based on previous demon-

strations of category representation and attentional control in

LPFC [20–27], because TE tuning for value cues was too early

for top-down control, and category information was not

observed in LPFC (Figure S3B).

This rapid feed-forward mechanism in TE for value cue signals

could be important for highly familiar, behaviorally relevant

objects in the real world. It could speed time-critical behavioral

responses during foraging, courtship, and predator evasion. It

could also free up cognitive processing resources for higher-

level operations like comparison and decision making. Analysis

of fine visual detail depends on the ventral pathway, making it

the logical site for initial processing of subtle value cues. Ventral

pathway value cue processing is also consistent with the imme-

diate, automatic nature of value perception for familiar, important

objects.

The response patterns we observed reflect changes in shape

processing based on learning about shape-reward relationships.

This is consistent with previous demonstrations of other types

of learning effects in TE [35–49]. In particular, Tanaka and

colleagues [50, 51] found that about 20% of TE neurons showed

significant positive or negative differences in responses to
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Tuning

To perform these analyses, spike trains were

smoothed by convolution with an asymmetrical

product of exponents filter to prevent backward

biasing of response energy in time [62–64]. Tuning

was evaluated for each 1-ms time bin.

(A) Temporal tuning profiles for individual neurons

with significant (p < 0.05) value-related tuning in at

least one category for a continuous period of at

least 50 ms. For each neuron, brightness corre-

sponds to tuning strength (response/value corre-

lation) in the category where its tuning strength

was greatest (i.e., the category with maximum

time-averaged response/value correlation, rmax,

as in Figure 6 [horizontal axis]). Thus, brightness is

analogous to curve height in a peri-stimulus time

histogram. Color indicates consistency of value

tuning across categories in terms of minimum

cross-predicted correlation among the other three

categories (rmin, as in Figure 6 [y axis]). Neurons are

rank-ordered from top to bottom within each

subpopulation (TE and LPFC) according to value-

tuning consistency.

(B) Temporal profiles for category-specific value

cue tuning in TE (green, averaged across 50 TE

neurons for which rmin had a different sign or was

not significant, t test, p < 0.05) and category-

invariant value tuning in LPFC (red, averaged

across 20 neurons for which rmin had the same sign

and was significant).

See also Figures S4, S5, and S6.
rewarded and unrewarded stimuli in a go/no-go visual discrimi-

nation task, although variance due to reward contingency was

a small fraction of variance due to stimulus selectivity in most

cases. The average onset latency for reward dependency was

near 200 ms, indicating a delayed, top-down effect unrelated

to the first-pass effects described here.

In addition, Kaskan et al. [52] used fMRI in monkeys to show

that learning produced stronger responses to high-value images

in TE, LPFC, and medial frontal cortex, results that are in accor-

dance with human imaging studies [53–59]. Consistent with our

results, Nelissen et al. [60] used fMRI in monkeys to show that

ventrolateral prefrontal cortex (VLPFC) and OFC are differentially

responsive to value-related shapes during learning, but, post

learning, this difference is only observed in visual cortex. Living-

stone and colleagues have shown that training on relative object
Current B
value can reorganize ventral pathway cor-

tex in young monkeys [61]. They demon-

strate that large functional modules,

distinguishable with fMRI, can develop

for arbitrary groups of stimuli through

behavioral experience and need not

reflect evolutionary hardwiring. This

does not necessarily show that value in-

formation per se is processed in ventral

pathway, but it does show that extensive

experiencewith stimuli in a value compar-

ison task can lead to highly specialized,

dedicated processing mechanisms.
In our experiment, we did not see evidence for a mechanism in

which category identification in LPFC leads to top-down

enhancement of visual value cue processing in TE (Figure 1B).

Task-relevant information did not appear in LPFC until 40 ms

after category-specific value cue tuning appeared in TE.

Moreover, the task-relevant information in LPFC was category-

invariant value tuning rather than category identity signals. While

many TE neurons (53/155) exhibited strong tuning (p < 0.01,

F test) for category identity (Figure S3B), we found no instances

of tuning for category identity at that statistical threshold in our

sample of 125 LPFC neurons.

This contrasts with a well-known study by Freedman and

colleagues [20] showing that, in a categorical delayed-match-

to-sample task (DMS), LPFC manifested clear, binary signals

for 2-alternative category identity, even though visual variation
iology 28, 538–548, February 19, 2018 545



was continuous across the stimulus space, and the category

boundary was arbitrary. In the same experiment, TE neurons

did not express strong signals for category identity, although

they did carry task-relevant shape information [21]. There are

two salient differences between the experiments that could

explain this discrepancy. First, in our experiment, the four

categories had distinct differences in medial axis shape, which

is represented strongly in TE even without training [28]. In

Freedman et al. [20], the category boundary was an arbitrary,

subtle division in a continuous space of cat- and dog-like

shapes. TE neurons carry information about fine shape differ-

ences [41] but might be unable to exhibit the precipitous

drop-offs in response at arbitrary boundaries because they

represent structure, not abstract meaning.

Second, category identity was only an intermediate logical

value in our task design. It was important only for defining the

correct shape cue and its positive or negative relationship to

value. There was no need for explicit cognitive representation

of category identity or storage of category identity in short-

termmemory as therewas in Freedman et al. [20]. Once category

identity had been used to interpret shape cues correctly, it

became irrelevant to the task, since only value (liquid reward)

needed to be stored in memory and compared at the end of

the task. In Freedman et al. [20], in contrast, identity was the final

variable to be compared to determine the behavioral response.

Thus, on both stimulus design and task design grounds, the

two experiments predispose different results for neural repre-

sentation of object categories. It is also possible, however, that

the discrepancies are explained by different recording locations

within large areas (TE and LPFC) in which compartmentalization

remains uncertain.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two adult female rhesus macaques (Macaca mulatta) weighing 6.0 and 4.0 kg were used in this study. These animals were not

involved in previous procedures. They were group housed prior to training but singly housed during training and experiments. All

procedures were approved by the Johns Hopkins Animal Care andUse Committee and conformed to USNational Institutes of Health

and US Department of Agriculture guidelines.

METHOD DETAILS

Behavioral task and stimuli
Both monkeys were trained to perform an object value comparison task. Throughout each behavioral trial, monkeys were required to

maintain fixation on a small red spot within 1� of visual angle. Eye position wasmonitored with an infrared eye tracker (ISCAN). Object

stimuli were rendered in OpenGL and presented on a computer monitor in white against a gray background, centered at fixation. The

maximum stimulus dimension range was 5–6.5� of visual angle.
The task required monkeys to estimate and compare the reward values of two object stimuli randomly drawn from four categories.

The four categories were defined by their medial axis shapes (Figure 2A), independent of orientation. In other words, orientation of all

stimuli varied randomly (at 45� intervals) andmonkeys were required to ignore and generalize across these orientation changes. Each

category-defining shape was a specific configuration of connected limbs. The use of common constituent parts across categories

ensured that category recognition required global shape perception.

Variable distance between limbs and curvature at limb junctions served as both value-defining cues and irrelevant cues in different

categories, and each category had both relevant and irrelevant feature variations. Relevant and irrelevant features varied randomly,

but with constraints to ensure even sampling of cue values and even sampling of reward value differences between the two stimuli in

each trial. The categories of the two stimuli in each trial also varied randomly (but were constrained for equal sampling of the four

categories), and were always unknown to the animal prior to stimulus onset. Finally, stimulus orientations varied randomly.

Neural recording
We recorded electrical spike times of 155well-isolated single units in area TE in the twomonkeys, 101 from the 6.0 kg female (monkey

1, right hemisphere) and 54 from the 4.0 kg female (monkey 2, left hemisphere). We recorded spike times of 125 well-isolated single

units in LPFC in the same two monkeys, 100 from monkey 1, left hemisphere, and 25 from monkey 2, right hemisphere. Recordings

were made with polyamide-coated, 125 mm diameter, 2–4 MU tungsten electrodes (AM Systems, Frederick Haer, Microprobe).

Electrical activity was amplified and filtered and single units were discriminated with multiple time-amplitude windows on a

Tucker-Davis Technologies recording system. Spike times were digitized at a temporal resolution of 25 KHz.

Electrodes were introduced through a 25-gauge guide tube using a custommicrodrive systemmounted in an acrylic cap attached

with orthopedic bone screws. Electrode positioning was based on anatomical MRI images for each monkey. TE neurons were

recorded from the ventral bank of the superior temporal sulcus and the lateral convexity of the inferior temporal gyrus, over an ante-

rior-posterior range of 12–20 mm anterior to the external auditory meatus. LPFC neurons were recorded anterior to the arcuate

sulcus, 0–3 mm dorsal or ventral to the principal sulcus.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Neural tuning for value cues and absolute value
Response rates for each stimulus were averaged across the 600 ms presentation window and across 5 repetitions. Value-related

tuning was characterized with linear regression models fit to individual stimulus categories, with value cue level as the independent

variable and response rate as the dependent variable. Statistical significance of value-related tuning (correlation between response

rate and value cue level) wasmeasuredwith t tests corrected for 4 comparisons. Significance of correlationwasmeasuredwith t tests

(p < 0.05) corrected for 4 comparisons. Significant tuning for value cues could occur in one or more categories, potentially with

opposite relationships to absolute value. Tuning for absolute value was defined as significant tuning in all four categories with the

same sign with respect to absolute value (r > 0 in all four categories, or r < 0 in all four categories). Magnitude of absolute value tuning

is expressed throughout the paper as tuning strength (r) in the category with the smallest absolute r value.

Temporal response profiles
For temporal analyses, spike trains were smoothed with an asymmetric Gaussian function (15 ms SD causal side, 5 ms SD acausal

side) [62–64] and averaged across all repetitions of each stimulus. This procedure yields a robust estimate of instantaneous response

rate that avoids backward bias in time by means of the primarily causal weighting in the smoothing filter. To determine when

population average tuning curves became significantly different from baseline level (averaged over the period from –50 to 0 ms

relative to stimulus onset), we performed a one-sided t test in each 1 ms time bin, and found the first point at which significance

exceeded p < 0.05 and remained above that level. The same procedure was used to determine the time at which average TE

response levels became significantly different from baseline.

Shape tuning models
We quantified shape tuning with linear/nonlinear models based on L- and T-shaped medial axis fragments, using procedures

described in previous publications [28, 64] and explained here. The shapes and positions of these fragments defined category

identity and value cue levels in the behavioral task. Models were based on 2–4 multi-dimensional Gaussian tuning functions (i.e.

products of 1-dimensional Gaussians) for L- or T-fragment object-centered position in polar coordinates, orientation, and curvature.

Curvature was squashed to a range from –1 (acute concave) through 0.0 (flat) to 1 (acute convex) with the following function:

c
0
=

2:0

1+ e�a,c
� 1:0

where c is curvature (radians/cm; at the screen distance of 50 cm, 1 cm subtended 1.15� of visual angle), c’ is squashed curvature,

and a = 0.05. Thus, each L- or T- fragment was represented as a point in a 4-dimensional space, and each stimulus was represented

as a set of such points corresponding to its constituent elements. The 2–4 range of component Gaussian tuning functions

corresponds to the model complexities providing best cross-validated fits to IT response patterns in previous analyses, based on

the Bayesian Information Criterion and/or cross-prediction between independent datasets [28, 64].

For a given stimulus, the response predicted by each Gaussian tuning function was the sum of function values at the points cor-

responding to that stimulus’ L- and T- fragments (i.e., inner product between Gaussian and contour element points):

R=A,
X# fragments

c= 1

gaussianðkc; oc; rpc; apcÞ
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c= 1

e
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2s2
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�

where kc, oc, rpc, and apc are the (fixed) curvature, orientation, relative position, and absolute position values for each contour

element in the stimulus, the m’s and s’s are the fitted Gaussian centers and standard deviations on each of these 4 dimensions,

and A is the fitted Gaussian amplitude (positive/excitatory or negative/inhibitory).

For each neuron, we fittedmodels based on combinations of 2-4 Gaussian component functions. Amodel’s predicted response to

each stimulus was a weighted combination of the individual Gaussian function responses (the linear component) and products of

Gaussian responses of the same sign (the nonlinear component). All possible pairwise product terms were tested in different

model-fitting procedures. By varying weights of linear and nonlinear terms, our models could range continuously from linear

summation acrossmedial axis fragments to nonlinear selectivity for fragment combinations. In equation form, the predicted response

was:

R= gain,

$ X# Gaussians

s= 1

ðwsRsÞ+wNL+

Y2
s= 1

ðRsÞ �wNL�

Y2
s= 1

ðRsÞ
%+

+b0
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where Rs is the unweighted response predicted by each Gaussian alone, ws is the fitted linear weight (amplitude) for each

Gaussian, wNL+
and wNL� are the fitted weights for the excitatory and inhibitory nonlinear terms, b0 is the baseline neuronal firing

rate, and P,R+ represents rectification of the predicted response at 0 spikes/s.

These models were fitted to each neuron’s response data using an iterative nonlinear least-squares algorithm (MATLAB, lsqnonlin

function) to minimize the sum of squared differences between observed and predicted responses. For each neuron, we used a

stepwise regression procedure to determine the optimum number of Gaussian tuning functions to explain responses without over

fitting. Fits were validated by cross-prediction of responses in one held-out category by models fit to the remaining 3 categories.

Significance of cross-prediction was measured with a t test for correlation between predicted and observed responses, at a

statistical threshold of 0.05, corrected for 4 comparisons to 0.01. Addition of Gaussian tuning functions to the model was arrested

at the level where cross-prediction was highest and further addition produced over-fitting of the training categories and lower

cross-prediction of the held out category.

DATA AND SOFTWARE AVAILABILITY

Data from these experiments and analyses can be obtained by request to the Lead Contact.
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