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ABSTRACT

The ventral temporal cortex (VTC) of the human cerebrum is critically engaged in high-level vision. One intriguing 
aspect of this region is its functional lateralization, with neural responses to words being stronger in the left hemi-
sphere, and neural responses to faces being stronger in the right hemisphere; such patterns can be summarized with 
a signed laterality index (LI), positive for leftward laterality. Converging evidence has suggested that word laterality 
emerges to couple efficiently with left-lateralized frontotemporal language regions, but evidence is more mixed regard-
ing the sources of the right lateralization for face perception. Here, we use individual differences as a tool to test three 
theories of VTC organization arising from (1) local competition between words and faces driven by long-range cou-
pling between words and language processes, (2) local competition between faces and other categories, and (3) 
long-range coupling with VTC and temporal areas exhibiting local competition between language and social process-
ing. First, in an in-house functional MRI experiment, we did not obtain a negative correlation in the LIs of word and 
face selectivity relative to object responses, but did find a positive correlation when using selectivity relative to a fix-
ation baseline, challenging ideas of local competition between words and faces driving rightward face lateralization. 
We next examined broader local LI interactions with faces using the large-scale Human Connectome Project (HCP) 
dataset. Face and tool LIs were significantly anti-correlated, while face and body LIs were positively correlated, con-
sistent with the idea that generic local representational competition and cooperation may shape face lateralization. 
Last, we assessed the role of long-range coupling in the development of VTC lateralization. Within our in-house 
experiment, substantial positive correlation was evident between VTC text LI and that of several other nodes of a 
distributed text-processing circuit. In the HCP data, VTC face LI was both negatively correlated with language LI and 
positively correlated with social processing in different subregions of the posterior temporal lobe (PSL and STSp, 
respectively). In summary, we find no evidence of local face–word competition in VTC; instead, more generic local 
interactions shape multiple lateralities within VTC, including face laterality. Moreover, face laterality is also influenced 
by long-range coupling with social processing in the posterior temporal lobe, where social processing may become 
right lateralized due to local competition with language.
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1.  INTRODUCTION

Visual recognition is a fundamental skill performed by 
humans and animals alike, important both in its own right 
and for guiding higher-order interactions with inanimate 
objects and social agents. The neural substrate of visual 
recognition is implemented in the ventral visual pathway 
and comprises a hierarchy of regions that transform reti-
nal inputs into high-level features suitable for recognition 
across large naturalistic variation in the inputs (DiCarlo & 
Cox, 2007; Felleman & Van Essen, 1991; Mishkin et al., 
1983; Yamins & DiCarlo, 2016b). After processing in the 
early retinotopic areas, signals are propagated to the 
ventral temporal cortex (VTC), a large extrastriate area 
encompassing multiple stages of mid- and high-level 
visual processing.

Many investigations have characterized the functional 
organization of VTC—how representations of stimulus 
and task properties are spatially organized across the 
cortical surface (Kanwisher, 2010). For example, in almost 
all participants, a face-preferring region can be found on 
the fusiform gyrus (Chen et al., 2023; Kanwisher et al., 
1997), a word-preferring region can be found near the 
occipitotemporal sulcus (McCandliss et al., 2003; Rueckl 
et al., 2015), and a place-preferring region can be found 
near the parahippocampal gyrus (Epstein et  al., 1999) 
and collateral sulcus (for review, see Grill-Spector & 
Weiner, 2014). In addition to the presence of category-
selective areas, a different perspective has noted super-
areal spatial organization for higher-order properties, 
such as animacy and real-world size (Konkle & Caramazza, 
2013), or, more abstractly, dimensions of object space 
(Bao et al., 2020). Within this object space perspective, 
the first two dimensions of organization were proposed to 
be animacy and stubbiness/spikiness (Bao et al., 2020); 
however, one study, controlling for image-based con-
founds, has suggested that the distinction between faces 
and bodies holds greater importance in the organization 
of human VTC than stubbiness/spikiness (Yargholi & Op 
de Beeck, 2023). Recently, work has demonstrated that 
both the low dimensions of object space (Bao et  al., 
2020) and the higher dimensions are topographically 
organized in the macaque inferotemporal cortex (Yao 
et  al., 2023), in line with other research demonstrating 
hierarchical topographic organization of different proper-
ties within VTC (Brants et  al., 2011; Sato et  al., 2013; 
Tanaka, 1996, 2003). Many aspects of VTC topographic 
organization have recently been shown to emerge within 
self-organizing neural network models, given pressures 
to perform high-level object recognition tasks under spa-
tial pressures to keep connectivity short or to exhibit local 
correlation (Blauch et al., 2022b; Doshi & Konkle, 2023; 
Margalit et al., 2024).

1.1.  Faces and words in VTC

Humans are expert at recognizing faces, a skill acquired 
over evolutionary timescales (Parr, 2011). As such, the 
presence of one or more visually face-selective areas in 
VTC has been seen as tantalizing support of a possible 
adaptive and evolved functional network (Kanwisher, 
2010; Ratan Murty et al., 2020). However, most humans 
are also expert at the visual recognition of words, a skill 
which has only become widespread in most societies 
over the last few hundred years (Roser & Ortiz-Ospina, 
2018), which is too short of a timeline for human brains to 
have evolved a particular mechanism for this ability 
(Dehaene & Cohen, 2007; Polk & Farah, 1998). Neverthe-
less, a word-selective region emerges in VTC in virtually 
all readers (Dehaene et  al., 2010; McCandliss et  al., 
2003), but is absent in illiterate individuals (Dehaene 
et al., 2010). That VTC contains a response profile selec-
tive for words is strong evidence for the idea that 
experience-dependent plasticity can drive the large-scale 
functional organization of VTC to reflect the visual statis-
tics of ecologically relevant tasks (Dehaene & Cohen, 
2007; Yamins & DiCarlo, 2016a).

Importantly, neural representations of faces and words 
demonstrate complementary lateralization patterns, with 
face selectivity typically stronger in the right hemisphere 
(RH), and word selectivity typically stronger in the left 
hemisphere (LH). Rather than being confined to a single 
selective area, there are multiple areas that respond pref-
erentially for each of these categories within VTC in many 
or most observers. For face processing, there is general 
consensus of the presence of an occipital face area, OFA 
(Gauthier et  al., 2000), and two fusiform face-selective 
areas: FFA-1 and FFA-2 (also referred to as pFus-faces 
and mFus-faces) in the posterior and middle fusiform 
gyrus, respectively (Grill-Spector et  al., 2017; Weiner 
et al., 2017). These regions are generally considered to 
be part of a core hierarchical network (Gobbini & Haxby, 
2007), homologous to the macaque face-patch system 
that has been studied in greater detail (Bao et al., 2020; 
Tsao et  al., 2003, 2008). For words, it is thought that 
there are posterior regions in each hemisphere, L-VW-
FA-1 and R-VWFA-1, that support perceptual feature 
extraction, and a more anterior and left-dominant region, 
L-VWFA-2, that communicates with downstream lan-
guage areas (Lerma-Usabiaga et al., 2018; White et al., 
2019). White et al. (2019) have suggested that interhemi-
spheric communication prior to VWFA-2 allows for the 
combination of word-related information from each 
visual hemifield to converge in the left VWFA-2, where 
word recognition is accomplished. Additionally, face and 
word recognition have each been viewed as recruiting an 
extended distributed cortical network, with regions in 
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VTC being seen as critical nodes involved in higher-level 
feature extraction, part of the general processing 
demands for each of these categories (Bouhali et  al., 
2014; Gobbini & Haxby, 2007; Rosenthal et  al., 2017; 
Stevens et al., 2017; Vin et al., 2024).

1.2.  Individual variability

The functional organization of VTC is broadly consistent 
across individuals, as reflected in the success of group-
level analyses. However, examination of individual func-
tional maps also reveals substantial inter-participant 
variability. Indeed, this variability has motivated the 
widespread use of functional localizers that are designed 
to demarcate a selective cluster of voxels within an ana-
tomical search space so that the response profile of the  
functionally defined region can be analyzed on a single-
participant basis (Kanwisher, 2010; Kanwisher et  al., 
1997). This approach circumvents the spatial blurring of 
heterogeneous functional regions across individuals; in 
the case of the VWFA, individual variability obscures the 
observation of word-selective responses in VTC using a 
purely anatomical definition (Glezer & Riesenhuber, 
2013).

Somewhat surprisingly, however, the individual vari-
ability in spatial organization that motivates the use of 
functional localizers—variability not only in the location, 
but also in the size, shape, and hemispheric organization 
of functional regions, as well as in the number of func-
tional regions—has received only limited consideration. 
This has painted a somewhat rigid view of the mosaic of 
functional topography in VTC, emphasizing a principled 
developmental outcome rather than a principled develop-
mental process. Notably, although the classic VWFA 
(VWFA-2) is typically left lateralized, it exhibits a rightward 
laterality in participants exhibiting rightward language 
dominance in frontotemporal areas (Cai et al., 2008, 2010; 
Gerrits et  al., 2019; Van der Haegen et  al., 2012). This 
finding would be expected if VWFA inherits its laterality 
through functional coupling with downstream language 
lateralization (Behrmann & Plaut, 2020), and preferential 
anatomical and functional connectivity between VWFA 
and language areas (Bouhali et  al., 2014; Saygin et  al., 
2016; Stevens et  al., 2017). Moreover, recent work has 
demonstrated clear individual differences in both the size 
and number of face-selective regions in VTC (Chen et al., 
2023; Gao et  al., 2022). Overall, the marked variability 
challenges the claim of canonical areal organization 
(Felleman & Van Essen, 1991; Kanwisher, 2010), suggest-
ing a more stochastic developmental process with multi-
ple possible local and global solutions in terms of areal 
organization and inter-areal connectivity (Astle et  al., 
2023; Sporns et al., 2004). In this way, individual variabil-

ity may provide clues into the developmental origins of 
VTC organization (Davies-Thompson et al., 2016; Dundas 
et al., 2015).

1.3.  Competition between words and faces?

What gives rise to the topographic and hemispheric 
organization of words and faces? The neuronal recycling 
(NR) hypothesis (Dehaene & Cohen, 2007) suggests that 
the VWFA emerges in a specific LH region that both 
receive foveal inputs and have connectivity with LH lan-
guage regions, satisfying the input and output demands 
of reading. A related theory of graded hemispheric spe-
cialization (GHS) has proposed that the acquisition of 
literacy creates a competitive pressure with faces in the 
LH VTC, which leads to the rightward lateralization of 
face processing (Behrmann & Plaut, 2015; Plaut & 
Behrmann, 2011). Specifically, both words and faces 
compete to be proximal to high-acuity visual information 
in lateral cortical regions, with words competing more 
strongly in the LH to also be proximal to left-lateralized 
language areas. Critical to GHS, this competition is not 
monolithic and varies across individuals, resulting in 
graded degrees of lateralization (Behrmann & Plaut, 
2020). Objects, which are recognized with less expertise 
and thus place less demand on foveal resources, and 
scenes, which place greater demands on peripheral 
vision, are thus proposed to be largely spared from this 
competition, in line with their weaker lateralization 
(Hasson et al., 2002, for related ideas, see Levy et al., 
2001).

One important difference between NR and GHS is 
that, while GHS agrees that neuronal recycling may be 
at play, it considers cortical competition more generally, 
encompassing both recycling (i.e., one category “steal-
ing” the resources of another) and blocking (i.e., pre-
venting the acquisition of a category in a neural region) 
(see also Dehaene-Lambertz et  al., 2018, discussed 
below). However, both NR and GHS can be considered 
as instances of reading-based lateralized neuronal com-
petition (or reading-LNC) theories (Rossion & Lochy, 
2022), where local competition between word and face 
representations drives rightward face lateralization. 
Reading LNC (see Fig. 1 for a schematic) has been sup-
ported by multiple lines of evidence. First, compared 
with illiterate individuals, literate individuals show a 
reduction in face responses in the anatomical peak of 
the left VWFA (Dehaene et al., 2010). Second, the onset 
of reading instruction predicts both behavioral signa-
tures of rightward face lateralization (Dundas et  al., 
2013) and lateralized neural responses to faces mea-
sured with EEG (Dundas et al., 2014). Similarly, assess-
ing individual differences, Dundas et  al. (2015) 
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demonstrated that rightward laterality of the N170 to 
faces increased with a stronger LH N170 for words, and 
to a weaker extent, greater degree of right handedness 
(among left and right handers). Lastly, computational 
modeling has supported the plausibility of the GHS 

claims (Blauch et al., 2022a; Plaut & Behrmann, 2011), 
demonstrating that the pressure for words to engage LH 
language representations can result in both leftward lat-
eralization for words and a compensatory weaker right-
ward lateralization for faces.

Fig. 1.  Visual schematic of the three lateralized neuronal competition (LNC) theories examined here. Competitive and 
cooperative relationships proposed in each theory are shown in individual panels. The size of blobs indicates the relative 
hemispheric specialization. We next describe these three theories, which are not mutually exclusive. (A) Reading-LNC: 
learning to read gives rise to a left VTC laterality for words, to couple with language. Rightward VTC face laterality results 
from local competition with left-lateralized VTC word representations, which demand similar foveal inputs but require 
distinct representations from faces. (B) Local-LNC: Representational overlap of different categories influences the sign and 
degree of correlated laterality. Rightward VTC face laterality emerges through local lateralized neuronal competition and 
cooperation more generally, not specific to words. Note: this theory does not specify the primary source(s) of lateralization 
in VTC, however, as shown with green cooperation arrows between “other categories” and other unspecified brain areas, 
it is presumed not to affect faces directly, but rather indirectly through local competition with representations that are 
affected by such external factors (as in reading LNC, but more generically). (C) Long-range-LNC: Language processing, 
which has an innate bias toward left lateralization, competes with social processing in the STSp, giving rise to rightward 
lateralization of social processing. VTC face laterality is induced by long-range coupling with social processing, similar to 
the long-range pressure of words to couple with language representations in both temporal and frontal areas.
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1.4.  Challenges to local competition between 
words and faces

Recently, however, there have been some important chal-
lenges to the claim that face lateralization is driven by local 
recycling or competition with emerging word representa-
tions. Two longitudinal studies have examined children’s 
reading acquisition to document the emergence of word 
selectivity, and to examine retroactively the site of eventual 
word-selective cortex before children were exposed to 
orthography. In the first study, Dehaene-Lambertz et  al. 
(2018) found that word-selective cortex did not recycle 
previously face-selective cortex. Rather, eventual word-
selective voxels appeared to show weak selectivity prior to 
the onset of reading, with some voxels showing mild pref-
erences for tools, but not for faces. These findings led 
Dehaene-Lambertz et al. (2018) to revise the NR hypothe-
sis, suggesting that word selectivity emerges from weakly 
selective voxels; in contrast, right-hemispheric face later-
alization emerges due to a blocking mechanism, whereby 
left-lateralized word selectivity prevents the expansion of 
left-hemisphere face selectivity, yielding a relative right-
ward bias for faces. In a second study, Nordt et al. (2021) 
found that left-lateralized word selectivity emerged from 
voxels that were weakly selective for limbs but not for 
body parts more generally (the Dehaene-Lambertz et al. 
(2018) study did not include a limb category). Limb selec-
tivity was found to wane over development, with the more 
weakly limb-selective voxels converting to word selectivity, 
along with other non-selective voxels. These findings led  
Kubota et  al. (2023) to conclude that faces and words 
develop along independent trajectories (although this pro-
posal leaves the rightward face lateralization unexplained). 
While the evidence does not support direct NR of face-
selective cortex by words (Dehaene-Lambertz et al., 2018; 
Nordt et  al., 2021), broader competitive relationships 
between reading and face processing would appear import-
ant in explaining the various empirical relationships found 
between reading skill and face lateralization (Ben-Shachar 
et  al., 2011; Dehaene et  al., 2010; Dundas et  al., 2013, 
2014; Kubota et al., 2019; Pinel et al., 2015).

Rossion and Lochy (2022) recently offered similar 
challenges to the proposed local competition between 
words and faces in VTC, noting inconsistency in the find-
ings of studies that have attempted to assess this predic-
tion. While Brederoo et  al. (2020) found a relationship 
between word and face laterality measured behaviorally 
using reaction time, and Dundas et al. (2014, 2015) found 
a relationship between the laterality of word and face-
related ERPs, fMRI studies examining individual differ-
ences have revealed a murkier picture with mixed findings 
but generally lacking support for a direct relationship 
between the laterality indices of word and face selectivity 

in VTC (Canário et  al., 2020; Davies-Thompson et  al., 
2016; Pinel et al., 2015).

1.4.1.  Long-range lateralized neuronal competition

Rossion and Lochy (2022) suggested an alternative 
mechanism of cortical competition, whereby competition 
between language processes (relevant for words) and 
spatial and social processes (more relevant for faces) 
outside of VTC results in a domain-relevant lateralization 
that then influences the lateralization of VTC, through a 
coupling mechanism similar to that proposed between 
visual word and language representations. While Rossion 
and Lochy (2022) referred to this theory as the language-
related lateralized neural competition (LNC) theory, to 
contrast it with reading-LNC theories emphasizing the 
role of local, reading-induced competition within VTC, we 
will refer to it as the long-range-LNC (schematized in 
Fig.  1). This emphasizes how VTC face lateralization 
depends on competition in areas that show long-range 
coupling with VTC, and contrasts it more precisely with 
the other theories examined in this work. Here, we focus 
on the possible role of social perception in influencing the 
laterality of face representations. Using multiple types of 
social interaction stimuli, Isik et al. (2017) demonstrated 
clustered selectivity for social interactions in the posterior 
superior temporal sulcus (STSp) of the right hemisphere. 
This selectivity was found to directly abut and partially 
overlap selectivity for dynamic face videos versus 
dynamic videos of other object categories (Isik et  al., 
2017). Notably, even when analyzing the non-overlapping 
populations of voxels from each functionally defined 
region, the region preferring social interactions retained a 
significant response to faces, and the region preferring 
faces retained a significant response to social interac-
tions and multivariate information useful for decoding 
between positive and negative interactions. Social pro-
cessing in the STSp has been studied extensively, reveal-
ing a complex map of selectivity for different subprocesses 
of social perception (McMahon et al., 2023; McMahon & 
Isik, 2023), with face perception considered one of sev-
eral entry points into higher-level social perception. How-
ever, rather than being entirely separable, the cortical 
selectivity profile suggests an intimate relationship 
between face perception and social perception in the 
STSp, one that might influence the laterality of the 
broader face processing network (Haxby et al., 2002).

The long-range LNC theory states that (1) language 
locally competes with some other function—likely social 
processing, but perhaps others—giving rise to a right-
ward laterality for that function, which (2) then has an 
upstream effect on the lateralization of face processing. 
The first claim has received recent empirical support, 
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with demonstrations of a spatially precise competition 
between language and social processing in the STSp (in 
a social task reliant on spatial perception; Rajimehr et al., 
2022), and a general complementary profile of RH lateral-
ization for social processing across the LH-dominant lan-
guage network. Thus, this complementary rightward 
lateralization for social processing may encourage right-
ward lateralization of VTC face representations through 
long-range cooperative pressures between VTC and the 
STSp (see also Powell et  al., 2018, for related ideas 
regarding coupling with medial prefrontal cortex playing a 
role in the location of VTC face selectivity). Intriguingly, 
Pinel et al. (2015)—who failed to find competition between 
word and face laterality in VTC—demonstrated a positive 
correlation between rightward VTC face laterality and 
reading skill (see also Dundas et  al., 2013), as well as 
between both leftward VTC word and rightward face lat-
erality with the leftward laterality of the superior temporal 
sulcus (STS) in a spoken language task. While this does 
not address the coupling with social processing directly, 
the collection of findings is suggestive of a possible link.

1.4.2.  General local lateralized neuronal 
competition

This final theory considers more general local competi-
tion within VTC between faces and other categories, 
without lending privileged status to words. Instead, this 
theory suggests that the entire graded topography of 
VTC is subject to lateralized competition and cooperation 
for representational and physical space (Fig. 1). Accord-
ingly, we term this theory local-LNC. This theory arises 
naturally from a locally interactive view of the topography 
of VTC, where topography emerges in a graded fashion 
due in part to the visual properties that must be learned 
in service of general high-level visual tasks (Blauch et al., 
2022b; Doshi & Konkle, 2023; Prince et al., 2024). On this 
view, interactions between categories may be more 
generic, with hemispheric organization being one facet of 
topographic organization that is dependent on graded 
competition between domains. The graded competition 
may be initiated by coupling between a distal source and 
particular local representation, but the outcome for other 
categories depends on the similarity of local representa-
tions. Despite the appearance of local category process-
ing modules, VTC is known to contain highly distributed 
information content (Haxby et  al., 2001, 2011), where 
stimuli from non-preferred categories can be decoded 
from category-selective areas. Such information appears 
to arise due to the systematicity of non-preferred 
responses, which is not idiosyncratic but extends across 
subjects (Downing et al., 2006; Prince et al., 2024) and is 
well captured by deep neural network models (Prince 

et  al., 2024). This distributed information is thus not 
inconsistent with local functional specialization (Spiridon 
& Kanwisher, 2002), but it also points to the graded and 
interactive nature of representations in VTC. Critically, the 
overlap in neural responses for different categories pre-
dicts the behavioral ability to process multiple objects, 
with greater difficulty in processing multiple exemplars 
from categories with similar neural representations (faces 
and objects) than from categories with more distinct neu-
ral representations (faces and scenes) (Cohen et  al., 
2014). Similarly, neural representational similarity of pairs 
of categories in VTC strongly predicts visual search 
results (Cohen et al., 2017).

Thus, the trajectory of local lateralized competition 
may be determined largely by the similarity structure of 
VTC representations, not just the similarity of input and 
output demands. To the extent that some categories 
recruit lateralized processing outside of VTC, this could 
incite local lateralized competition with other categories 
depending on the overlap in representation. Notably, in 
addition to language lateralization impacting the lateral-
ization of words, visual tool processing is known to elicit 
a left-lateralized circuit in right-handed individuals 
(Johnson-Frey, 2004; Lewis, 2006)—including in VTC 
(Chao et  al., 1999; Downing et  al., 2006)—presumably 
due to visuomotor interactions supporting visually guided 
tool use with the dominant (right) hand. Of interest, repre-
sentations of tools are known to overlap specifically with 
representations of hands (Bracci et  al., 2012; Knights 
et al., 2021), which are located next to general body rep-
resentations (Bracci et al., 2010), themselves being next 
to face representations (Downing et  al., 2001, 2006). 
Such systematicity may give rise to a relationship 
between face laterality and both tool and body laterality.

1.5.  The present study

In the current work, we focus on elucidating the laterality 
of human ventral temporal cortex, with a focus on  
face processing. Since face representations begin to 
develop very early in life, longitudinal “recycling” studies 
(Dehaene-Lambertz et al., 2018; Nordt et al., 2021), which 
have been useful for studying word representations, may 
be less well suited to examine the emergence of face lat-
eralization, since face representations do not “recycle” 
any pre-existing functions. Rather, assessing the variation 
across individuals may yield greater insight into general 
lateralized neuronal competition with face representations 
in VTC.

Here, with a sample of over 50 participants, we present 
the results of a neuroimaging study aimed at elucidating 
patterns of individual variability in the hemispheric organi-
zation of high-level visual representations. Additionally, 
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we incorporate analyses of the large-scale Human Con-
nectome Project (Barch et al., 2013; Glasser et al., 2013), 
power to test related ideas, benefitting both from the large 
number of subjects and the presence of additional tasks 
to probe brain activity. We begin by demonstrating strong 
individual variability in the topographic and hemispheric 
organization of VTC. We then use this variability as an 
inferential method to study the sources of lateralization in 
VTC, analyzing local competition and long-range cou-
pling. Specifically, our data will be used to examine three 
related (non-mutually exclusive) theories regarding the 
role of lateralized neuronal competition (LNC) in the devel-
opment of rightward face lateralization, extending the ter-
minology of Rossion and Lochy (2022) (see Fig.  1). 
Importantly, while the first theory proposes specifically 
developmental competition, the latter two theories could 
be implemented by competitive forces over development 
alone, or in combination with evolved changes in brain 
anatomy.

	 1.	� Reading-LNC: rightward VTC face laterality results 
from local competition with left-lateralized word 
representations;

	 2.	� Local-LNC: rightward VTC face laterality emerges 
through local lateralized neuronal competition and 
cooperation more generally, not specific to words, 
initiated by unspecified external cooperative pres-
sures;

	 3.	� Long-range-LNC: VTC face and text laterality are 
induced by long-range coupling with external lat-
eralized processes; specifically, VTC text laterality 
is induced by coupling with LH frontotemporal lan-
guage areas, and VTC face laterality is induced by 
coupling with RH frontotemporal areas involved in 
processes that compete locally with language, 
such as social processing.

2.  METHODS

2.1.  Main neuroimaging experiment

2.1.1.  Participants

Individuals were recruited from the Carnegie Mellon Uni-
versity community, and were excluded from if they met 
any of the following criteria: left-handed, non-native 
English speaker, multilingualism in childhood, presence 
of metal in body, significant neurological or psychiatric 
history, claustrophobia, or any other contraindication for 
MRI. A total of 55 right-handed young adults (35 female, 
age mean  =  21.3, SD  =  3.89, Edinburgh handedness 
mean = 86.9, SD = 16.5) completed a 1-h session of MRI 
scanning and 2 h of behavioral experiments. Diffusion 
imaging and behavioral results were not analyzed for the 

results reported in this paper. An additional participant 
was recruited, but did not complete the imaging session 
and was thus excluded from analysis. Last, two subjects 
were excluded on the basis of showing rightward text lat-
erality (LI < −0.4), and two subjects were excluded due to 
not completing the diffusion experiment. We reanalyze all 
main results from our in-house experiment using these 
subjects in the Supplementary Material (Section 7; Fig-
ures S12–S17), finding minimal differences.

The procedures used in this study were reviewed and 
approved by the Institutional Review Board of Carnegie 
Mellon University. All participants gave informed consent 
prior to their participation, and were paid $50 for their 
participation.

2.1.2.  Experimental protocol

Imaging data were acquired on a Siemens Prisma 3T 
scanner with a 64-channel head coil at the BRIDGE Center 
of Carnegie Mellon University and the University of 
Pittsburgh (RRID:SCR_023356). The imaging sequence 
included a T1-weighted anatomical image, field-mapping 
image, diffusion-weighted images, and functional images. 
The anatomical image was collected first, followed by the 
field-mapping image, followed by two functional runs, fol-
lowed by the diffusion-weighted images, followed by the 
final three functional runs. Thus, in total five runs of func-
tional imaging data (TE = 30 ms, TR = 2000 ms) were col-
lected, at isotropic resolution of (2 mm)3. Each functional 
run lasted approximately 5 min, containing several mini-
blocks of multiple images from a given category presented 
rapidly at fixation. We used a modified version of the func-
tional localizer of Stigliani et al. (2015), referred to as fLoc, 
but with six categories: words, faces, objects, inverted 
faces (or scrambled, see next section), inverted words, 
and non-word letter strings. The object, face, and inverted 
face categories contained two subcategories, cars and 
guitars for objects, and adult and children for faces, using 
the original stimuli from Stigliani et al. (2015). Participants 
performed a 1-back stimulus identity task during the scan. 
They were told there would be some instances in which an 
exact image would repeat in two consecutive frames, and 
that they should press a button as quickly as possible to 
indicate detection of the stimulus repeat. A total of 24 
repeats occurred per functional run, randomly inter-
spersed across mini-blocks. Participants were given 1 s to 
press the button for their response to be counted as cor-
rect, and accuracy was reported at the end of each block 
to allow for monitoring of subject attention. Rest mini-
blocks were intermixed with category mini-blocks, and 
were treated the same as stimulus mini-blocks in terms of 
frequency and duration. The order of mini-blocks was fully 
counterbalanced across categories, such that a mini-block 
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of each category preceded a mini-block of each other cat-
egory exactly once in a run. Each mini-block lasted 6 s, 
containing 12 stimuli (or 0 in the rest condition), each pre-
sented for 400 ms with a 100 ms inter-stimulus interval 
(ISI). The first block began 10 s after imaging acquisition, 
to allow for the scanner to reach a steady state. Additional 
imaging acquisition lasting 14 s followed the final block of 
stimuli, allowing for the BOLD signal to return to baseline. 
Example stimuli and a schematic for the experimental 
design are shown in Figure 2.

The data reported here were aggregated from two 
slightly different protocols. The first set of 28 participants 
performed the fLoc task with 6 categories: faces, inverted 
faces, words, inverted words, letter strings, and objects 
(also used in Vin et al., 2024). The second set of 27 par-
ticipants performed a similar fLoc task in the scanner, but 
the inverted faces condition was replaced with a scram-
bled image condition in order to assess selectivity rela-
tive to a baseline that allows for the removal of response 
estimation overlap in the raw beta coefficients, but does 
not enforce the selectivity map to contain only the most 
preferential responses for a given category. For the pur-
poses of our individual difference analyses, and for any 
other analysis involving all subjects, the inverted faces 

and scrambled conditions are ignored so that identical 
contrasts can be constructed for each participant.

2.1.3.  Functional imaging data preprocessing

The functional imaging data were preprocessed using 
fMRIPrep 1.4.1 (Esteban et  al., 2018; Esteban et  al., 
2019), which is based on Nipype 1.2.0 (Gorgolewski 
et al., 2011, 2018). Many internal operations of fMRIPrep 
use Nilearn 0.5.2 (Abraham et al., 2014), mostly within the 
functional processing workflow. For more details of the 
pipeline, see the section corresponding to workflows in 
fMRIPrep’s documentation. Here, we quote the methods 
output directly from fMRIPrep as applied in our experi-
ment, a procedure encouraged by the fMRIPrep authors 
to ensure accuracy of the methods description. Some 
modifications were made to remove unnecessary details 
regarding estimation of unused confounds, as well as to 
improve clarity.

For each of the five BOLD runs per participant, the fol-
lowing preprocessing was performed. First, a reference 
volume and its skull-stripped version were generated 
using a custom methodology of fMRIPrep. A deformation 
field to correct for susceptibility distortions was estimated 

Fig. 2.  Experimental design. (A) Example stimuli from each of six categories, and the number of participants who viewed 
each category. (B) A schematic of one run of the experiment. Note that the repeat condition could be anywhere within the 
block, not only at the end.
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based on two echo-planar imaging (EPI) references with 
opposing phase-encoding directions, using 3dQwarp 
(Cox & Hyde, 1997) (AFNI 20160207). Based on the esti-
mated susceptibility distortion, an unwarped BOLD refer-
ence was calculated for a more accurate co-registration 
with the anatomical reference. The BOLD reference was 
then co-registered to the T1w reference using bbregis-
ter (FreeSurfer) which implements boundary-based reg-
istration (Greve & Fischl, 2009). Co-registration was 
configured with nine degrees of freedom to account for 
distortions remaining in the BOLD reference. Head-
motion parameters with respect to the BOLD reference 
(transformation matrices, and six corresponding rotation 
and translation parameters) were estimated before  
any spatiotemporal filtering using mcflirt (FSL 5.0.9, 
Jenkinson et al., 2002). The BOLD time-series were resa-
mpled onto their original, native space by applying a sin-
gle, composite transform to correct for head-motion and 
susceptibility distortions. Gridded (volumetric) resam-
plings were performed using antsApplyTransforms 
(ANTs), configured with Lanczos interpolation to minimize 
the smoothing effects of other kernels (Lanczos, 1964). 
These volumetric resampled BOLD time-series will be 
referred to as preprocessed BOLD in original space, or 
just preprocessed BOLD. The head-motion estimates 
calculated in the correction step were placed within con-
founds file for denoising in the general linear model (GLM), 
described later. Several additional confounding time-
series were calculated based on the preprocessed BOLD: 
framewise displacement (FD), DVARS, and three region-
wise global signals. FD and DVARS were calculated for 
each functional run, both using their implementations in 
Nipype (following the definitions by Power et al., 2014). 
Additionally, a set of physiological regressors was 
extracted to allow for anatomical component-based noise 
correction (aCompCor, Behzadi et al., 2007). aCompCor 
was constrained within an anatomical mask designed to 
be highly unlikely to contain relevant signal to the experi-
ment. This mask was made up of the intersection of a 
subcortical mask, with the union of cerebro-spinal fluid 
(CSF) and white matter (WM) masks. The subcortical 
mask was obtained by heavily eroding the brain mask, 
which ensures that it does not include cortical gray-matter 
(GM) regions. Masks were computed in T1w space, and 
projected into the native space of each functional run 
(using the inverse BOLD-to-T1w transformation) before 
performing the intersection and union across masks. 
Within the final mask, the preprocessed BOLD time-series 
was high-pass filtered using a discrete cosine filter with 
128  s cutoff before performing principal components 
analysis to yield the final aCompCor components, which 
were stored in the confounds file along with the other nui-
sance regressors.

2.1.4.  fMRI General Linear Model (GLM)

fMRI data were analyzed using SPM12. For each partic-
ipant, a general linear model was specified in order to 
model the effect of each stimulus category on the BOLD 
response of every voxel in the brain. Specifically, each 
mini-block was modeled as a single event specified by 
its onset and a duration of 6  s. The design matrix  
thus contained six stimulus regressors, one per condi-
tion, each of which was convolved with a canonical 
hemodynamic response function. A reduced set of 
fMRIPrep-generated confounds was retained for nui-
sance regression; specifically, we retained six motion 
parameters (X, Y, Z motion and rotation), the top six 
principal components of the aCompCor decomposi-
tion, and the framewise displacement, yielding a total of 
13 nuisance regressors, along with a runwise mean 
regressor, which were appended to the design matrix. 
Finally, an autoregressive-1 model was used within 
SPM12 to reduce the effects of serial correlations. We 
fit voxels only within the brain mask defined by fMRIPrep. 
Estimation of the GLM resulted in a beta weight for each 
stimulus condition and run, which were used for subse-
quent univariate and multivariate analyses.

2.1.5.  Regions of interest

The primary region of interest (ROI) for this work is a 
large ventral temporal cortical (VTC) area, whose ana-
tomical mask consisted of the union of the inferior-
temporal and fusiform ROIs defined in the Freesurfer 
aparc atlas. We also defined multiple regions of interest 
outside of VTC, using the Glasser atlas (Glasser et al., 
2016), following the approach of Vin et al. (2024). Inferior 
frontal gyrus (IFG) was defined as the union of areas 
“44,” “IFJa,” “6r,” and “IFSp”; superior temporal sulcus 
and gyrus (STSG) were defined as the union of areas 
“STSdp,” “TPOJ1,” “A5,” and “STV”; precentral gyrus 
was defined as the union of areas “55b” and “PEF”; IFG 
pars orbitalis (IFGorb) was defined as the union of areas 
“IFSa,” and “45”; intraparietal sulcus (IPS) was defined 
as the union of areas “IP0,” “IP1,” “IP2,” and “IPS1”; 
early visual cortex (EVC) was defined as the union of 
areas “V1,” “V2,” and “V3.”

2.1.6.  Calculation of fMRI hemispheric selectivity 
and laterality index

Hemispheric selectivity for various contrasts was com-
puted separately and used to compute the laterality 
index (LI). The intersection of two masks—anatomical 
and stimulus-responsive—was used to constrain voxel 
selection for the computation of selectivity in each 
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hemisphere. Each ROI was associated with one or more 
anatomical parcels used to construct the anatomical 
mask. The stimulus-responsive mask was defined as 
voxels whose response was significantly greater during 
the stimulus periods than rest periods, with p < 0.001. 
Selectivity was computed from whole-brain statistical 
maps computed in SPM12, which used contrasts com-
paring voxelwise activation of some set of conditions to 
another. As words, letter strings, and inverted words 
evinced similar responses in ventral regions (see Vin 
et  al., 2024, for explicit consideration of differences in 
activation across text conditions within this dataset), we 
grouped words, inverted words, and letter strings into a 
“text” domain. Responses to inverted faces were not 
analyzed in this work. Contrasts were balanced in total 
weight across numerator and denominator, as well as 
across any sampled domains within the numerator or 
denominator (i.e., faces, objects, text), to avoid biasing 
our selectivity metrics to the more heavily sampled 
domains (i.e., text). We computed text selectivity with the 
contrast (Words + Inverted Words + Letter Strings)/3 − 

(Faces + Objects)/2. Likewise, to compute face selectiv-
ity, we used the contrast (Faces) − ((Words + Inverted 
Words + Letter Strings)/3 + Objects)/2. Last, we com-
puted object selectivity as Objects − (Faces + (Words + 
Inverted Words + Letter Strings)/3)/2. We refer to these 
contrasts as the full baseline contrasts, indicating that 
the baseline contains all of the domains, as typically 
done in fMRI studies. In the next section and in Table 1, 
we explain our use of alternative contrasts with different 
baselines. We examined three dependent measures of 
hemispheric selectivity: summed positive t-statistics, 
peak t-statistic, and number of selective voxels. Where 
not stated, we used summed selectivity as the metric of 
selectivity, as it best captures the total profile of selectiv-
ity considering both the size of the region and the mag-
nitude of the selectivity within the selective region; while 
it is useful to correct for total cortical volume of the bilat-
eral anatomical ROI when assessing hemispheric selec-
tivity, the laterality index is unaffected by this correction. 
An illustration of our approach can be seen in Figure 3. 
For each metric, selectivity was computed for a given 

Table 1.  Functional contrasts used in each pairwise LI comparison of our in-house experiment (Fig. 5).

Category 1 Category 2 Baseline Contrast 1 Contrast 2

Faces Text Full
β i,F

i

1,3,5
∑ −

!β i,T + β i,O
2

!β i,T
i

2,4
∑ −

β i,F + β i,O
2

Faces Text Held-out (Objects) β i,F − β i,O
i

1,3,5
∑ !β i,T − β i,O

i

2,4
∑

Faces Text Fixation β i,F
i

1,3,5
∑ !β i,T

i

2,4
∑

Objects Text Full β i,O
i

1,3,5
∑ −

!β i,T + β i,F
2

!β i,T
i

2,4
∑ −

β i,O + β i,F
2

Objects Text Held-out (Faces) β i,O − β i,F
i

1,3,5
∑ !β i,T − β i,F

i

2,4
∑

Objects Text Fixation β i,T
i

1,3,5
∑ !β i,T

i

2,4
∑

Faces Objects Full β i,F
i

1,3,5
∑ −

β i,O + !β i,T
2

β i,O
i

2,4
∑ −

β i,F + !β i,T
2

Faces Objects Held-out (Text)
β i,F − !β i,T

i

1,3,5
∑ β i,O − !β i,T

i

2,4
∑

Faces Objects Fixation β i,F
i

1,3,5
∑ β i,O

i

2,4
∑

Where β i,F , β i,O, β i,W , β i,L, and β i,I are the beta coefficients for faces, objects, words, letter strings, and inverted words, respectively; for 

a given run number i, we let !β i,T =
β i,W + β i,L + β i,I

3
. Note that the “fixation baseline” uses an implicit baseline, since the GLM-derived 

beta coefficients are inherently in reference to the unmodeled fixation baseline in the experimental design. Where not otherwise stated in 
the main text, the “full” baseline serves as the default.
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category C in selected voxels of a given hemisphere H, 
denoted SC,H. Finally, the laterality index for a given cat-
egory C, LIC, was computed as

	
LIC =

SC,L − SC,R
SC,L + SC,R

.
	

2.1.7.  Functional contrasts

To assess competition across domains, we used multiple 
different functional contrasts, built from beta coefficients 
derived from a single underlying GLM. The purpose of 
this approach was to minimize confounding factors in 
the establishment of correlations across domains. In all 
cases, statistical confounding was prevented by using 
independent runs of data to compare LI values across 
domains; however, category-based confounding may still 
persist by way of different selectivity contrasts containing 
overlapping sets of categories. Considering the standard 
full baseline for faces and text (defined in the previous 
section), it is clear that both positive and negative biases 
exist in the correlation of the two contrasts. First, to the 
extent that object responses and LI are reliable across 
subsets of runs, the presence of objects in both denomi-
nators induces a positive correlation between the two 
contrasts. Perhaps more problematically, under the same 
assumption of reliability for faces and text, the swapped 
presence of faces and text in numerator and denominator 
across the two contrasts induces a bias toward negative 
correlation. Thus, comparisons using full contrasts may 
be inappropriate for discovering true patterns of correla-
tion across participants, being biased by category-based 
confounds due to overlap in the contrasts. The simplest 
solution is to assess the LI of each domain against the 
fixation baseline, using a one-sample t-test of beta coeffi-
cients against 0. However, this may fail to eliminate a large 
degree of shared variability that may be overestimated 

due to the fast event-related design used here. Thus, in 
addition to examining the (1) full baseline and (2) fixation 
baseline, we additionally examine (3) the held-out domain 
baseline, where in the comparison of LI for two domains 
(e.g., face and text), the third domain is used as a com-
mon baseline (i.e., faces vs. objects, text vs. objects), and 
(4) the fixation baseline with the LI of the held-out cate-
gory regressed out of the LI of each domain in the com-
parison. These four approaches make up the four columns 
of Figure 5, and are described explicitly in Table 1.

2.1.8.  Whole-brain atlas-based laterality

In some analyses, we computed LI across the whole 
brain using a fine-grained cortical parcellation. For this 
purpose, we used the Yan homotopic atlas with 500 par-
cels per hemisphere (Yan et al., 2023).

2.1.9.  Cortical surface visualization

Pycortex (Gao et al., 2015) was used for visualization. All 
visualizations were performed in fsaverage surface space, 
following a sulcal-based alignment (Fischl et  al., 1999) 
implemented in Freesurfer. The boundaries of parcels 
from the Human Connectome Multi-Modal Parcellation 
(HCPMMP) atlas (Glasser et  al., 2016) were manually 
drawn in Inkscape and added to the Pycortex “overlays.
svg” file as a visual guide to viewing the surface images.

2.2.  Analysis of the Human Connectome Project

In addition to the analyses of our in-house dataset, we 
took advantage of the large-scale Human Connectome 
Project (HCP) dataset to perform additional, complemen-
tary analyses. For computational convenience, we down-
loaded pre-computed category-selective maps available 
on Amazon Web Services S3 storage, under the HCP_1200 

Fig. 3.  Computing summed hemispheric selectivity and laterality index (LI) in VTC, using face selectivity in an example 
participant. The ventral inflated cortical surface is shown. Posterior-anterior axes are labeled with P and A, and left and 
right hemispheres with L and R. (A) We begin with the raw t-statistic map. (B) This map is then masked anatomically by the 
VTC ROI. (C) The masked map is thresholded at 0. Positive t-statistics are then summed to compute selectivity in the left 
and right hemispheres, SL and SR, respectively. Finally, the laterality index is computed.
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folder. We focused on the Working Memory, Language, 
Social, and Emotion tasks. These tasks have been dis-
cussed extensively in the literature, so we will discuss only 
the basics here and refer the reader to Glasser et al. (2016) 
for more specific details.

We extracted surface-based contrast maps in the 32k_
fs_LR group CIFTI space of the HCP preprocessing pipe-
line (Glasser et  al., 2016), using standard sulcal-based 
alignment rather than the multimodal-surface-matching 
procedure (Robinson et al., 2014), due to the latter’s use 
of functional data to compute the alignment, which could 
introduce dependencies between estimates of different 
functional topographies. We acquired the maps smoothed 
with a Gaussian kernel of 2 mm FWHM, which was the 
smallest amount of smoothing available. The hcp_utils 
(https://rmldj​.github​.io​/hcp​-utils/) Python package was 
used as a source of a CIFTI-based HCPMMP atlas, simi-
lar to the one used in our main analyses. The HCPMMP 
atlas was used for all selectivity analyses. We constructed 
a VTC ROI as the union of several HCPMMP parcels: V8, 
pIT, FFC, VVC, PHA1, PHA2, PHA3, TE2p, TF, PH, VMV1, 
VMV2, VMV3. This VTC ROI—shown in the inflated sur-
face panels of Figure 6—is similar to the VTC ROI used in 
the main experiment (see Fig.  3). Selectivity analyses 
were performed in the 32k_fs_LR space; however, for the 
purposes of visualization in PyCortex (Gao et al., 2015), 
we transformed relevant maps to the standard higher res-
olution fsaverage cortical surface space using Connec-
tome Workbench tools wrapped within the hcp_utils 
package.

2.2.1.  Visual working memory task

The visual working memory (WM) task consisted of a 
block design of visual categories—faces, bodies, tools, 
and places—with a 0-back or 2-back working-memory 
task, which was used to index category selectivity in VTC 
and neural mechanisms for visual working memory. Our 
focus is on the former usage. For the WM experiment, 
HCP provides contrasts of each category against baseline 
(fixation), as well as against the average of all other cate-
gories. The former contrast essentially accounts for the 
signal in beta weights for a given category across runs, 
given the noise in the estimates, whereas the latter con-
trast is a more typical index of “selectivity” for one cate-
gory versus the others. Neither of these choices is ideal 
for assessing individual differences in selectivity across 
participants: contrasting each category versus baseline is 
too lenient and results in widespread positive correlations 
between all conditions, whereas contrasting each cate-
gory versus the average of all others introduces negative 
correlations due to statistical dependence between the 
contrasts for each category. We constructed new con-

trasts by making use of the category versus baseline con-
trasts, which were constructed across two experimental 
runs. We chose “places” as a baseline category to com-
pare bodies, tools, and faces. These contrasts were con-
structed by subtracting the places versus fixation 
contrasts from each category versus fixation contrast.

2.2.2.  Language task

The language (LANG) task consisted of a block design of 
story listening or math problem-solving blocks (Binder 
et al., 2011; Glasser et al., 2016). The contrast of primary 
interest was stories versus baseline, following Glasser 
et al. (2016) and Rajimehr et al. (2022).

2.2.3.  Social task

The social (SOCIAL) experiment consists of a block 
design alternating blocks of interactions between simple 
shapes that are either social or random in nature, with the 
task being to determine whether the interaction is social 
or not (Glasser et al., 2016). As in Rajimehr et al. (2022), 
we used the “theory of mind (TOM)—random” contrast 
as an index of social processing.

2.2.4.  Emotion task

The emotion (EMOTION) task presents blocks of emo-
tional face stimuli alternating with blocks of non-emotional 
simple shape stimuli (e.g., rectangles, ovals). Participants 
are tasked with matching a left or right stimulus with a 
target stimulus above the two sample stimuli. We com-
puted emotional face selectivity and LI using the contrast 
(faces − shapes).

2.2.5.  Whole-brain atlas-based laterality

As in the main experiment, we performed an analysis 
based on the LI computed in a fine-grained cortical par-
cellation. For greater facilitation with the CIFTI-based 
HCP data, we used the HCP parcellation, containing 180 
parcels per hemisphere (Glasser et al., 2016).

2.2.6.  Social and language processing in the 
homotopic language network

To assess the long-range LNC theory, we used a recently 
developed parcellation of language network regions used 
to demonstrate competition between social and lan-
guage processing (Rajimehr et  al., 2022), based on 
group-level language activation in the HCP task. Eight 
regions were parcellated: “Broca” in the inferior frontal 
gyrus, along with “55b,” “perisylvian language area 
(PSL),” “parietal area G inferior (PGi),” “posterior superior 

https://rmldj.github.io/hcp-utils/
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temporal sulcus (STSp),” “anterior superior temporal sul-
cus (aSTS),” “anterior superior temporal gyrus (STGa),” 
and “superior frontal lobule (SFL),” all of which were 
named based on the most closely related HCP anatomi-
cal parcels, which were otherwise not used in areal defi-
nition. These regions are shown in Figure  8A and are 
described in more detail in Rajimehr et al. (2022).

3.  RESULTS

3.1.  Individual differences in VTC organization

Our first goal was to determine the degree of individual 
variation present in VTC organization by gathering and 
analyzing our own empirical data. Figure 4A shows the 
resulting distribution of laterality indices (LIs) for each 

Fig. 4.  Individual differences in VTC laterality. (A) Distributions of LIs for each category contrast. (B) Consistency of 
individual LIs across even and odd subsets of runs. (C) Overlap of category-selective areas across even and odd runs, 
across-participant (blue), and within-participant (orange). Overlap is computed as the dice coefficient applied to category-
selective masks computed from even or odd runs, thresholded at p < 0.001. (D) Example individual participant maps for 
face and text selectivity, demonstrating large inter-individual variability and within-individual reliability.
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category contrast, demonstrating that there is substantial 
variation in the magnitude of laterality for each domain 
(even among the right-handed college-aged population 
examined in this study). At the group level, as expected, 
face selectivity is significantly right lateralized and text 
selectivity is significantly left lateralized, while object 
selectivity is weakly right lateralized; group-level maps 
are additionally plotted in Supplementary Figure S1.

We next quantified the reliability in subject-level LIs, 
by correlating LI values across two independent splits of 
the data (using either the even or odd runs) from the same 
participant, with the relationships shown in Figure  4B. 
We found that the reliability in LI is extremely high for 
each category (all Spearman’s ρ > 0.8, all p < 10−10). 
These reliable within-individual differences can be fur-
ther visualized in Figure 4D, which shows example indi-
vidual participant maps for face and text selectivity (all 
subjects are shown in Supplementary Figures  S6 and 
S7. In addition to stable individual differences in LI, dif-
ferences in within-hemisphere topography—including 
the location, size, and number of selective regions—are 
clearly present.

To quantify the general variability in topography across 
participants, and its reliability within participants, we 
computed the overlap of category-selective regions 
across participants and compared it with the overlap 
across independent splits of the data within participants 
(Fig. 4C). Specifically, we binarized the fsaverage selectiv-
ity maps to be 1 if positive selectivity exceeded p < 0.001, 
and 0 otherwise; we then computed the dice coefficient 
across maps masked within the VTC region. Whereas the 
overlap within participants is relatively high for most 
regions, indicating reliability, overlap is much weaker 
across participants, indicating the presence of substan-
tial individual differences in functional topography.

Having established the presence of individual differ-
ences in VTC organization, we next sought to examine 
how different aspects of VTC organization are related to 
each other (across participants), in order to draw implica-
tions for the various theories of functional competition.

3.2.  Local competition between faces and words

Rossion and Lochy (2022) argued that a key prediction of 
reading-LNC theories such as NR and GHS is that the 
lateralization of faces and words should be linked or inter-
dependent within VTC. We tested this prediction in young 
adults with competent reading skills. We compared later-
ality of faces, text, and objects, pairwise across partici-
pants, using multiple fMRI contrasts (see Section 2.1.7). 
In all cases, we used separate subsets of runs to compare 
laterality to ensure statistical independence of the con-
trasts. We first assessed the relationship between face 

and text LI, shown in Figure 5A, which these two accounts 
predict should be negatively correlated. In contrast to this 
prediction, we found no clear correlation between LIs for 
faces and text when using the full baseline ( r = 0.079, 
p > 0.05). When using responses to the held-out category 
(objects) as the baseline, we found a small positive cor-
relation in face and text LI (r = 0.079, p > 0.05). Lastly, 
when using a fixation baseline* (i.e., computing selectivity 
as a one-sample t-test of beta coefficients against 0), we 
found a strong positive correlation (r = 0.705, p < 0.00001). 
This correlation is largely reduced, but not abolished, 
when regressing out object versus fixation LI from both 
face and text LIs (r = 0.316, p < 0.05). In contrast to pre-
dictions from reading-LNC theories, rather than being 
negatively correlated, the LIs of faces and text appear to 
be positively correlated, except when using the full base-
line for which there is a category-based bias toward neg-
ative correlation.

Importantly, the lack of evidence for lateralized compe-
tition between words and faces was not changed by using 
two more typical measures of selectivity indexing either 
the strength (peak) or size (number of selective voxels) of 
the selective region (Supplementary Figs.  S4 and S5). 
Taken together, these results do not provide evidence 
supporting the reading-LNC (NR and GHS) hypothesis 
that VTC face laterality emerges from local competition 
with word representations (Behrmann & Plaut, 2020; 
Dehaene et al., 2010; Rossion & Lochy, 2022).

As noted above, prior work has suggested that words 
may compete more broadly with object-responsive cor-
tex, rather than with face-responsive cortex specifically 
(Kubota et al., 2019). Accordingly, we also compared the 
LI of objects and text across participants (Fig. 5B). Using 
the full baseline, we found a small negative correlation 
(r = −0.282, p < 0.05), indicative of competition. However, 
when the held-out category of faces alone is used as a 
baseline in selectivity contrasts, we found a lack of com-
petition (r = 0.077, p > 0.05), indicating that the prior 
result was likely due to the presence of the category-
based confound. When using the fixation baseline, there 
is a very strong positive correlation between object and 
text LI (r = 0.695, p < 0.00001); however, this correlation is 
abolished when regressing out the face versus fixation LI 
(r = 0.11, p > 0.05).

3.3.  Local correlation between faces and objects

Prior work demonstrated that the overlap in neural repre-
sentations for faces and objects predicted the behavioral 

*  Due to the smaller available sample with a scrambled condition (n = 27), we 
do not use these maps for studying individual differences. However, in explor-
atory analyses, we again found no relationship between face and text using 
the scrambled baseline.
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cost in representing exemplars from each of these cate-
gories, which was stronger than that for more distinct 
categories (e.g., faces and scenes) (Cohen et al., 2014). 
To determine whether there is also an overlapping lateral-
ity for faces and objects, we next compared their lateral-
ity patterns across participants (Fig.  5C). Using the full 
baseline for each, we found a weak and non-significant 
trend toward positive correlation in LI (r = 0.146, p > 0.05). 
However, using the held-out text baseline, we found a 
strong correlation in face and object LI (r = 0.58, 
p < 0.0001). As both the lack of positive correlation in the 

full baseline and the strong positive correlation in the 
held-out baseline could be driven by category-based 
confounding in the baselines, we next assessed the 
results using the fixation baseline. As in the previous 
cases, there is a strong positive correlation in LI (r = 0.812, 
p < 0.00001). As a final test, we examined this correlation 
after regressing out text versus fixation LI; the correlation 
remained strong (r = 0.627, p < 0.00001). This suggests 
that faces and objects exhibit a true correlation in their 
laterality across participants, despite faces being typi-
cally more lateralized, in line with the local-LNC theory.

Fig. 5.  Pairwise laterality index (LI) comparisons for faces, objects, and text. (A) Face versus text selectivity. (B) Object 
versus text selectivity. (C) Face versus object selectivity. For each subfigure, the first (leftmost) plot uses the full baseline 
(all categories), the second plot uses the held-out domain as the baseline, the third plot uses a fixation baseline, and the 
fourth plot uses a fixation baseline after regressing out the held-out category’s LI (using selectivity computed against a 
fixation baseline) from both LI values. In each case, even runs are used to compute the LI for the X-axis, and odd runs are 
used to compute the LI for the Y-axis. For full details on contrasts, see Table 1.
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3.4.  Local interactions between faces  
and other categories

We next evaluated the claim of the local-LNC theory that 
generic local competition within VTC, not specific to 
words or reading, shapes the lateralization of face pro-
cessing. For this purpose, we leveraged the Working 
Memory (WM) experiment of the Human Connectome 
Project (HCP), which has the advantage of having a much 
larger cohort of participants and thus greater statistical 
power to detect any effects. As discussed in Methods 
2.2, this experiment consists of blocks of faces, places, 
bodies, and tools. Noting that the selectivity for places 
was substantially more medial than that of faces, bodies, 
and tools, we opted to use places as a common baseline. 
Group-level category-selective maps of standard and 
modified contrasts are shown in Supplementary Fig-
ure S2. Faces, while present in the WM task, were also 
shown to participants in a separate Emotion experiment, 
consisting of a block design of emotional faces, and non-
emotional simple shape stimuli. This yields the opportu-
nity for an independent comparison of face laterality 
index (LI) and LI for other categories, not confounded by 
shared or opposing selectivity baselines. As a sanity 
check, we confirmed that face LI is similar across WM and 
Emotion tasks, throughout VTC (r = 0.483, p < 0.00001), 
and particularly in the fusiform face complex (FFC) parcel 
(r = 0.683, p < 0.00001). Thus, emotional face LI is a suit-
able independent measure of face LI to compare with 
body and tool LI from the WM experiment. We used con-
trasts of bodies − places, tools − places, and emotional 
faces − shapes to compute summed selectivity in each 
parcel of the symmetric HCPMMP atlas. Lastly, we com-
puted LI values for each pair of homologous parcels.

To assess lateralized competition between face repre-
sentations and those of bodies and tools, we correlated 
face LI with body and tool LI for each parcel, as well as at 
the level of the full VTC. For tools − places LI (Fig. 6A), we 
found significant negative correlations with face LI within 
VTC, notably in the FFC parcel (ρ = 0.17, p < 0.00001). For 
bodies − places LI (Fig. 6B), we found significant positive 
correlations with face LI within VTC, including in FFC 
(ρ = 0.13,p < 0.001), along with a broader swath of individ-
ual regions across ventral and lateral occipitotemporal 
cortex, peaking in the parcel immediately medial to FFC, 
known as the ventral visual complex (VVC; ρ = 0.316, 
p < 0.00001). These results are in line with the idea of local 
representational cooperation between faces and bodies, 
and local representational competition between faces 
and tools.

The correlations between the laterality indices of tools/
bodies and faces are largely opposite in sign and might 
be complementary. To test this, we computed the 

contrasts tools − bodies and bodies − tools, and per-
formed the same analyses. The tools − bodies contrast 
(Fig. 6C) reveals a larger number of negative correlations 
in VTC (despite a weaker correlation at the level of the full 
VTC swath), and an increase in the magnitude of the neg-
ative correlation with emotional face LI in FFC. Similarly, 
bodies − tools (Fig. 6D), reveal a strengthening of positive 
correlations with emotional face LI, including increases in 
VTC and FFC. Notably, the magnitude of the correlation 
is strongest in VTC and FFC when using the contrast 
bodies − tools. These results indicate that LI for tools and 
bodies are, respectively, negatively and positively cor-
related with the LI of faces, combining to produce the 
strongest relationship with face LI when directly 
contrasted. The slight increase in correlation magnitude 
for bodies − tools versus tools − bodies may be expected 
from the greater overlap in face and body responses 
(Supplementary Fig.  S3). In contrast, tool selectivity is 
typically adjacent to face selectivity and more likely to 
overlap body-selective responses, making direct parcel-
to-parcel correlation a less perfect test of competition, 
since the rise of leftward laterality in parcel B may corre-
spond more to a rise in rightward laterality in parcel A 
versus parcel B. Nevertheless, the neighboring and  
partially overlapping responses are associated with a 
negative correlation LI between faces and tools, and a 
positive correlation in LI between faces and bodies. The 
distributed pattern of correlations indicates that the co-
fluctuation of laterality across these domains spans a 
large anatomical substrate. Interestingly, as shown in 
Supplementary Figure  S8, when we compared the  
faces − places contrast with tools − places contrast, we 
found that competition in VTC was masked by broad 
baseline-driven correlation; we were able to recover 
competition within the WM experiment only when addi-
tionally adding bodies to the baseline.

In summary, our analysis of the HCP data identified 
local lateralized competition between faces and tools, 
and local lateralized cooperation between faces and bod-
ies, thereby supporting claims of the local-LNC theory.

3.5.  Long-range coupling of laterality

We have provided evidence in line with certain forms of 
local competition and cooperation—competition between 
faces and tools, and cooperation between faces and 
bodies. However, the apparent relationship between 
reading onset and face laterality (Behrmann & Plaut, 
2020; Dundas et al., 2013, 2014) was not explained in our 
data by local competition in VTC between representa-
tions of faces and words. However, beyond local con-
straint theories, other theories have emphasized the role 
of long-range connectivity in shaping the topographic 
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Fig. 6.  Comparing the laterality index (LI) for the faces − shapes contrast in the Emotion task, with LI for other contrasts 
encompassing tools and bodies. (A–D) Left: parcel-level correlation, computed within each parcel of the HCPMMP atlas. 
Significant correlations following FDR correction over 180 regions are plotted in a flat map and inflated ventral view. Right: 
correlations for individual regions, including ventral temporal cortex (VTC; pink outline), a large region made up of several 
HCPMMP parcels and the fusiform face complex (FFC; green outline). (A) Tools − places. (B) Bodies − places. (C) Tools − 
bodies. (D) Bodies − tools.

and hemispheric organization of VTC (Li et  al., 2020; 
Mahon, 2022; Price & Devlin, 2011; Rossion & Lochy, 
2022). Here, we focused on the long-range LNC theory 
(Rossion & Lochy, 2022), which states that the left lateral-
ization of language has a primary long-range coupling 
effect with reading in VTC, and a primary local competi-
tion effect with social processing in a region of the poste-

rior superior temporal sulcus (STSp) involved in language 
processing (Rajimehr et al., 2022); this local competitive 
effect with social processing is then argued to drive a 
secondary competitive effect of language lateralization 
on face lateralization in VTC, through a primary long-
range coupling effect between VTC face representations 
and social processing in the STSp.
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To test the predictions of this theory, we began by 
examining the coupling of laterality for text across a large 
distributed network activated by text, a network exam-
ined in our prior work with the same dataset (Vin et al., 
2024). Given that each node in this circuit exhibits signif-
icant leftward laterality (Vin et  al., 2024), we predicted 
that the LI would also covary across the distributed cir-
cuit: that is, individuals with greater LI in VTC would also 
have greater LI in the other nodes of this circuit.

Following Vin et al. (2024), and as described further in 
Methods 2.1.5, we defined several anatomical regions of 
interest based on subsets of parcels from the Glasser 
atlas (Glasser et al., 2016); we used the same ROIs, with 

the exception of EVC, which we constructed as the union 
of V1, V2, and V3. Thus, we had six regions of interest: 
early visual (EVC), dorsal visual (IPS), ventral high-level 
visual (VTC), and language-related (IFG, IFGorb, PCG, 
STSG)† (see Fig.  7B and also Fedorenko et  al., 2010, 
2024). Within these regions, we computed selectivity and 
then LI. We then correlated the LI of each region with that 
of our VTC parcel. As shown in Figure 7C, we found that 

Fig. 7.  Laterality of extra-visual areas correlates with the hemispheric profile of VTC text selectivity. (A) Text selectivity 
across the cortical surface (# of participants with significant activation, p < 0.001). (B) Anatomical parcels chosen for 
laterality comparisons, consisting of language network, dorsal visual, and early visual areas, along with VTC. (C) Laterality of 
VTC text selectivity is correlated with laterality of text selectivity across this distributed network. Note that for (C) and  
(E–F) below, separate sets of runs were used to compute laterality in VTC and other regions, eliminating trial-level 
correlations. (D) Mean of individual atlas parcels across participants. Red corresponds to leftward lateralization, whereas 
blue corresponds to rightward lateralization. (E) Correlation of individual patterns of laterality in each parcel with that of VTC, 
across participants, excluding parcels that overlap with the large VTC parcel. (F) Scatter plot comparing the parcel-level 
mean laterality with the across-participant correlation of laterality between the parcel and VTC, along with a line of best fit 
and result of a spearman correlation across parcels. (G) Results of (B) masked to show only the 50 parcels with the largest 
mean laterality. The vast majority of these lateralized parcels show an across-participant correlation in laterality with VTC.

†  While we did not perform functional localization of language-selective vox-
els within these areas, our use of summed selectivity sidesteps the issue of 
aggregating unrelated neighboring responses, since negative preferences in 
the same parcel do not influence this measure.
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the LI in VTC is positively correlated with that of each 
region in this circuit (all rho > 0.33, all p < 0.05).

To ensure this pattern is not due to our particular 
choice of anatomical ROIs, we performed a finer-grained 
and more generic analysis using a symmetric atlas with 
500 parcels in each hemisphere (Yan et  al., 2023). We 
computed summed selectivity in each parcel, and then 
computed LI for all homotopic pairs of parcels (Fig. 7D). 
Next, we computed the between-participant correlation 
of parcel LI with VTC laterality, using different subsets of 
runs (odd for VTC, even for other parcels). We plot these 
correlations, excluding VTC, in Figure 7E. To determine 
whether lateralized regions generally covary in their 
degree of laterality across participants, we computed the 
correlation between the average LI of each parcel, and 
its across-participant correlation with VTC. As shown in 
Figure 7F, we found a strong correlation between a par-
cel’s average LI and its correlation in LI with VTC across 
participants. Selecting a subset of the 50 most left-
lateralized parcels, we found that these parcels have 
consistently high correlations in their LI with that of VTC 
(Fig. 7G).

We performed a complementary analysis for faces in 
Supplementary Figure S9. While we did find a significant 
correlation between the parcel LI and correlation with 
VTC LI (rho = −0.17,p < 0.001; the negative sign indicating 
that greater rightward parcel laterality corresponds to 
greater correlation in LI with VTC), this relationship is 
weaker than it is for words, and less visually apparent 
(Supplementary Figs.  S9A, B, D). Rather than being 
driven by a large distributed circuit, as seen for text later-
ality, the coupling for faces appears to be driven mostly 
by a cluster of parcels in the posterior lateral temporal 
cortex, slightly posterior and superior to VTC and inferior 
to the STS.

In summary, these results provided support for a pri-
mary long-range coupling between frontotemporal lan-
guage processing and word processing in VTC, which 
appears to percolate to other nodes of the word process-
ing network including IPS and EVC. However, these 
results did not provide strong support for long-range 
coupling of face processing in VTC with other regions.

3.6.  Long-range lateralized neural competition

Last, we assessed the claim of the long-range-LNC the-
ory (Rossion & Lochy, 2022) that face lateralization 
emerges due to pressures to couple with downstream 
lateralized social processing regions, which are right lat-
eralized through competition with left-lateralized lan-
guage processes (Rajimehr et al., 2022).

Given the broad coupling in laterality for text process-
ing across frontotemporal areas, VTC, EVC, and IPS 

(Fig.  7), a natural prediction of the long-range-LNC 
account is that selectivity for faces in VTC should com-
pete with text laterality in these other regions. To assess 
this prediction, we adopted a data-driven approach sim-
ilar to that used for the individual category whole-brain 
coupling analyses (Fig. 7D–G; Supplementary Fig. S9). In 
this case, however, we compared VTC face LI with the 
text LI of ROIs across the entire cortex, using the object 
baseline. We found little coupling in VTC face LI with 
broader cortical text LI (Supplementary Fig. S10). More-
over, we found no significant relationship between ROI-
level text LI and VTC face LI, and the top text-lateralized 
ROIs show little consistency or strength in their correla-
tion with VTC face LI.

Generally, these results do not support the long-range-
LNC account, although it should be kept in mind that the 
perceptual demands of visual text processing—while acti-
vating downstream language regions (Stevens et al., 2017; 
Vin et al., 2024)—may not lead to robust engagement of 
linguistic processing mechanisms. Moreover, the shared 
object baseline may mask negative correlations, as dis-
cussed in the earlier section examining reading-LNC.

Two more direct predictions of the long-range-LNC 
account are that face LI should correlate negatively with 
language LI and positively with social LI (Rossion & 
Lochy, 2022). To test these predictions, we took advan-
tage of the language HCP task, and a recently developed 
parcellation of language network regions used to demon-
strate competition between social and language pro-
cessing (Rajimehr et al., 2022), shown in Figure 8A and 
described further in 2.2.6. We then computed language 
and social LI within each ROI, using the “story” contrast 
for language, and the “theory of mind (TOM) − random” 
contrast for social processing, following Rajimehr et al. 
(2022). Before proceeding to our analysis focused on 
VTC, we replicate the general results from Rajimehr et al. 
(2022) that motivated the analysis, using our summation-
based selectivity and the laterality index (L-R)/(L+R) 
rather than mean selectivity and laterality difference (L-R) 
that were used in this prior work. First, shown in Fig-
ure 8B, we found broadly complementary group-level lat-
erality indices for language in social processing across 
this network, with weaker LI magnitudes for social pro-
cessing. Next, performing an inter-subject correlation of 
social and language LI in these regions, we replicated the 
finding of a negative correlation specifically in STSp, sug-
gestive of a highly localized competition between social 
and language processing, shown in Figure 8C. Notably, 
areas 55b and PGi both show positive correlations, indi-
cating that the relationship between language and social 
processing may not be exclusively competitive. Having 
replicated the social versus language competition in 
STSp, we move on to test the predictions of the long-
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Fig. 8.  Long-range coupling in laterality for high-level vision, and language and social processing within functionally 
defined language ROIs. (A) Group-level language parcels defined by Rajimehr et al. (2022), plotted on the lateral and 
medial fsaverage surfaces along with the VTC parcel. (B) Laterality index (LI) of language and social processing computed 
within each parcel. Here and in the following panels, we used the “story” contrast for language processing, and the 
“theory of mind (TOM) – random” contrast for social processing, as in Rajimehr et al. (2022). (C) Inter-subject correlation 
of language and social LI within each parcel. (D) Inter-subject correlation of language and social LI in language parcels 
with visual processing LI in VTC, restricting to right-handed individuals (Edinburgh handedness >40). (E) Same as (D), but 
computed across all handedness thresholds; a threshold of 0 corresponds to including all subjects with a numerical right 
handedness, while a threshold of -100 corresponds to including all subjects including all strongly left-handed subjects.
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range-LNC account, by correlating social and language 
LI in each parcel with visual processing lateralities in VTC.

The results, shown in Figure 8D, demonstrate a signif-
icant negative correlation between language LI in PSL 
with both measures of face laterality, along with several 
trends toward negative correlations for other language 
network parcels. Additionally, we found that social pro-
cessing laterality generally correlated positively with 
emotional face laterality in VTC, though these correla-
tions did not survive family-wise statistical correction. 
Moreover, we found that VTC tool processing laterality 
was generally positively correlated with language lateral-
ity, particularly in STSa, while VTC body processing later-
ality followed a similar trend of negative correlation with 
language processing laterality in PSL, albeit not surviving 
family-wise statistical correction.

Noting that laterality is more variable among left 
handers (Labache et  al., 2023), we opted to take a 
broader look at the long-range laterality relationships 
across the full spectrum of handedness cutoffs, rather 
than just the right-handed population we have examined 
to this point. We repeated the same analysis as described 
above, at handedness thresholds spaced in scores of 10 
from -100 to 90, where -100 corresponds to including all 
subjects, 90 corresponds to including only the most 
right-handed subjects, and 40 corresponds to the previ-
ous analysis. The results, plotted in Figure 8E, demon-
strate a stronger negative correlation between language 
LI and VTC face LI at slightly weaker handedness thresh-
olds, but otherwise, a minimal dependence on handed-
ness threshold. Moreover, the relationships between VTC 
face LI and language LI in PSL survived after regressing 
out handedness, suggesting that they are not explained 
by handedness, but rather are dependent on having suf-
ficient variability in lateralization, variability which is found 
across a more relaxed handedness cutoff (see also 
Vingerhoets et  al., 2013). In contrast, the relationship 
between VTC tool LI and language LI generally increased 
when progressively including more left handers.

Assessing the relationships with social processing LI, 
we found that the negative correlation between STSp 
social LI and VTC emotional face laterality became signif-
icant at a slightly reduced handedness cutoff of 30, and 
remained similar for progressively relaxed cutoffs. A sim-
ilar weak relationship was seen between VTC emotional 
face LI and STSa social LI at more relaxed handedness 
cutoffs. However, the handedness cutoff did not produce 
any significant correlations between the face − place VTC 
LI and social processing LIs. These results indicate a cor-
respondence between face processing laterality in VTC 
and social processing laterality that is dependent upon 
the face processing task: a more socially relevant emo-
tional task was necessary to elicit this coupling in lateral-

ity. However, the results depended on a slightly weaker 
handedness threshold than our a priori choice.

In summary, the results provide weak but converging 
positive support for the long-range-LNC theory of face 
lateralization, through both negative correlations of face 
processing LI and language LI, and a positive correlation 
between specifically emotional face processing LI and 
social processing LI in the STSp, the same site where 
local competition is seen between social and language 
processing in the form of anti-correlated individual differ-
ences (Rajimehr et al., 2022).

4.  DISCUSSION

The current study examines individual variability in orga-
nization of visual categories within VTC, and leverages 
this variability to infer sources of its laterality. Although 
individuals show a generally similar arrangement in the 
global topographic organization of category selectivity 
in VTC (Grill-Spector & Weiner, 2014; Kanwisher, 2010), 
we demonstrated substantial individual variability in 
fine-grained category-selective topographic organiza-
tion and hemispheric laterality, which are stable across 
individual measurements within individuals but much 
more variable across individuals. These findings sug-
gest that various forces may cause differences in orga-
nization across development (Behrmann & Plaut, 2020). 
In the current work, we tested the predictions of devel-
opmental theories which propose lateralized neuronal 
competition (LNC), relying on individual differences to 
infer the mechanisms of functional interactions, and 
examining both local and long-range competitive/coop-
erative factors.

4.1.  No evidence for graded lateralized competition 
between words and faces in VTC

First, we tested the prediction of Neuronal Recycling (NR) 
(Dehaene & Cohen, 2007) and Graded Hemispheric Spe-
cialization (GHS) (Behrmann & Plaut, 2020)—two theories 
captured under the umbrella of reading-related lateral-
ized neural competition (reading-LNC) theories (Rossion 
& Lochy, 2022)—of a competitive relationship in lateral-
ization for written text and faces in VTC. While it is known 
that both face and text selectivity can have flipped hemi-
spheric dominance in the case of rightward language lat-
erality (Gerrits et  al., 2019)—which is more common, 
albeit still rare, in left-handed individuals—here we sought 
to test competition within right-handed individuals with 
gradations in the left lateralization of text selectivity. 
Across three different contrasts and three different selec-
tivity measures in a relatively large group of proficient 
readers, we found no evidence of a competitive relation-
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ship between faces and text. Rather, if anything, we 
found what seems to be a weak positive correlation 
between the LI of faces and text, and a stronger positive 
correlation between the LI of faces and objects.

The lack of apparent competition in lateralization for 
any of the categories is surprising (Centanni et al., 2018; 
Dehaene et al., 2010; Dundas et al., 2013, 2014, 2015), 
but replicates another fMRI study (Davies-Thompson 
et  al., 2016) that computed LI based on either peak 
response or number of selective voxels. Our larger sam-
ple, assessment of more contrasts, and assessment of 
the additional summed selectivity measure—which 
accounts for both the strength and size of the selective 
region—thus strongly corroborate this prior study 
(Davies-Thompson et al., 2016). While our results appear 
to be directly at odds with the study of Centanni et al. 
(2018), which found a negative correlation in the size of 
left VWFA and left FFA in children learning to read, this 
study used confounding baselines, comparing the size 
of regions defined with opposite contrasts (letters > 
faces for VWFA, faces > letters for FFA). Thus, it is 
entirely possible that the category-based confound 
explains their effect, rather than a true competition 
between letter and face responses. Moreover, our results 
are consistent with a recent study that found no correla-
tion in the LI of face and word selectivity in either chil-
dren or adults (Liu et al., 2024). Last, our results are also 
in line with recent longitudinal studies demonstrating 
that emerging text representations do not recycle face-
selective cortex, but rather appear to emerge in previ-
ously non-selective cortex (Dehaene-Lambertz et  al., 
2018) or weak, waning limb-selective cortex (Kubota 
et al., 2023; Nordt et al., 2021).

4.2.  Evidence for more general local interactions

Given the lack of evidence for local competition between 
faces and text, we wondered whether the laterality of 
faces might instead be related to individual laterality pat-
terns across a range of other categories in VTC. Notably, 
individual variability in topographic organization for 
faces and other categories in VTC can be predicted with 
models that consider shared information spaces with 
individual spatial tuning, in a way that generalizes to new 
stimuli (Feilong et al., 2023; Haxby et al., 2020), in line 
with distributed and overlapping information patterns in 
VTC (Haxby et al., 2001; Ishai et al., 1999). Thus, local 
cooperation and competition between representations 
involved in the perception of a much broader range of 
categories may influence face laterality on an individual 
basis; we termed this idea the local-LNC theory, which, 
while emphasizing generic local representational com-
petition, is not mutually exclusive with the possible role 

of reading (reading-LNC) or long-range coupling (long-
range-LNC) in shaping VTC laterality.

We first found a strong correlation in the LI for face and 
object selectivity in VTC, across the held-out category 
baseline, the fixation baseline, and the fixation baseline 
after regressing the held-out category versus fixation LI; 
this correlation was not seen, however, when using the 
full baseline, including a category-based negative con-
found (i.e., faces – objects + text vs. objects – faces + 
text). A weaker correlation was also seen between faces 
and text that survived the same 3/4 contrasts, however, it 
was about half the magnitude of that between faces and 
objects. In contrast, a positive LI correlation between 
objects and text was present only for the raw fixation 
baseline, implying it is not a true correlation. The strong LI 
correlation between faces and objects is in line with the 
local-LNC theory, and in particular with the finding of a 
stronger cost in simultaneously represented faces and 
objects, compared with other more neurally distinct cate-
gories (e.g., faces and scenes), indicating representa-
tional overlap (Cohen et al., 2014).

Next, an analysis of data from the Human Connec-
tome Project revealed distinct pairwise relationships in LI 
among visual categories, with face LI positively cor-
related with body LI and negatively correlated with tool 
LI, even across independent tasks. Local (anti-)correla-
tions were widespread in VTC, and notably strong within 
the fusiform face complex (FFC) anatomical parcel, the 
most frequent site of face selectivity. When we con-
structed explicit contrasts of bodies versus tools, the 
magnitude of relationships with face LI was enhanced 
relative to either individual category contrasted against 
places; moreover, the relationship was stronger for LI of 
bodies versus tools than for LI of tools versus bodies, in 
line with the greater overlap in selectivity for faces and 
bodies.

What might explain the relationships between faces, 
bodies, and tools? Notably, body selectivity overlaps 
strongly with both face selectivity (Downing et al., 2006; 
Peelen et  al., 2009) and tool selectivity (Bracci et  al., 
2012), which have a complementary lateralization pro-
file. In particular, tool and hand selectivity overlap in the 
lateral fusiform gyrus (Bracci et  al., 2012). That the 
viewing of faces frequently co-occurs with viewing bod-
ies, and both inform person recognition and social pro-
cessing, may give rise to the partially overlapping 
responses in VTC. Similarly, the co-occurrence of view-
ing hands and tools—both one’s own and those of oth-
ers observed using tools—may give rise to the partial 
overlap in their functional organization. While hand—
and more broadly limb (Weiner & Grill-Spector, 
2010)—selectivity overlaps with body selectivity, body 
selectivity overlaps more strongly with face selectivity 
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(Peelen et al., 2009), compared with the weaker overlap 
of limb and face selectivity (Weiner & Grill-Spector, 
2010); however, in HCP, the bodies condition contains 
limbs, hands, and headless bodies, so finer-grained 
conclusions cannot be drawn.

Moreover, prior studies make clear that the functional 
organization of VTC is graded, with each category-
selective area falling in a particular preference zone that 
partially explains responses to multiple categories (Bao 
et al., 2020; Konkle & Caramazza, 2013; Yao et al., 2023). 
The local-LNC account claims that this graded topogra-
phy is the product of cooperative and competitive pres-
sures occurring locally, albeit influenced by both 
bottom-up and top-down demands. This idea is in line 
with computational models that consider VTC as a uni-
tary representational space with graded topographic 
specialization encompassing selectivity for (and repre-
sentations of) both categories and other visual features, 
which evolve in an inherently dependent fashion (Blauch 
et al., 2022b; Doshi & Konkle, 2023), even if the outcome 
is a large degree of specialization (Blauch et al., 2022b; 
Dobs et al., 2021).

One challenge to the local-LNC theory comes from 
the study of Cohen et al. (2014). Whereas their finding of 
a stronger cost in simultaneously representing faces 
and objects—driven by greater neural representational 
overlap—is in line with our results of correlated LI 
between faces and objects, they also found a weaker 
cost in simultaneously representing faces and bodies, 
which appears at odds with our results of correlated LI 
between faces and bodies. Similarly, the face/body dis-
tinction has been proposed as a strong organizational 
principle for VTC (Yargholi & Op de Beeck, 2023). Nev-
ertheless, face and body representations have been 
shown in several studies to strongly overlap (Downing 
et al., 2006; Peelen et al., 2009), and both score high on 
the animacy dimension, which is proposed as one of the 
two main organizing dimensions of VTC (Bao et  al., 
2020; Konkle & Caramazza, 2013; Yargholi & Op de 
Beeck, 2023). Notably, self-supervised deep neural net-
works that learn visual representations without semantic 
tasks show a particular relationship between face and 
body responses; specifically, lesioning face-selective 
units leads to a strong cost in representing the catego-
ries that exhibit the strongest cost when lesioning body-
selective units (Prince et al., 2024). This implies that the 
visual statistics of viewing faces and bodies is sufficient 
to drive meaningful overlap in their neural responses, 
which appears to manifest as shared laterality. However, 
the body stimuli in the study of Cohen et al. (2014) can 
be distinguished largely based on the limbs, which have 
a more separable neural representation with faces 
(Weiner & Grill-Spector, 2010), perhaps explaining their 

finding of a weaker cost in simultaneous representation 
of faces and bodies.

4.3.  Long-range coupling of laterality

Last, we explored long-range coupling as a mechanism 
for the emergence of VTC lateralization. It is widely 
accepted that the lateralization of language drives the lat-
eralization of text processing in VTC (Dehaene et  al., 
2010; Li et  al., 2020). Accordingly, VWFA hemispheric 
dominance has been shown to track the hemispheric 
dominance of language in left handers with greater vari-
ability in language dominance (Gerrits et al., 2019). How-
ever, whether variability in VTC text lateralization similarly 
corresponds with that in language areas has not been 
explored within the more modest variability seen among 
right handers. Here, we found that a large distributed and 
lateralized cortical circuit of regions involved in text pro-
cessing (Vin et al., 2024) showed correlated text laterality 
with VTC across subjects. The correspondence in lateral-
ity between VTC and frontotemporal regions corresponds 
well with prior work using functional and structural con-
nectivity with language areas to predict the location of 
the VWFA (Li et  al., 2020; Saygin et  al., 2016; Stevens 
et al., 2017). However, the correspondence with IPS and 
EVC is more surprising (but see Kay & Yeatman, 2017), 
suggesting that text processing engages a highly recur-
rent and interactive cortical circuit in which language lat-
eralization percolates to text processing in all of the 
nodes. Whether the lateralization of processing in EVC 
and IPS emerges temporally before or after top-down 
feedback is an interesting question that could be 
addressed with more time-resolved methods such as 
MEG; if in advance of top-down feedback, it would sug-
gest that the bottom-up tuning of these regions has been 
shaped by the lateralization of language, as is thought to 
be the case for text selectivity in VTC (Dehaene & Cohen, 
2007; Price & Devlin, 2011).

Given this finding of long-range coupling in laterality 
for text, we next sought to explore the direct predictions 
of the long-range-LNC account regarding face lateraliza-
tion: that is, face LI should negatively correlate with lan-
guage LI, and positively correlate with social processing 
LI in homotopic frontotemporal areas encompassing the 
typically left-dominant language network (Rossion & 
Lochy, 2022). Indeed, broadly complementary laterality 
patterns for social and language processing have recently 
been found across the language network, with a negative 
correlation specifically in the STSp (Rajimehr et al., 2022); 
our goal was to test whether this may explain variation in 
the laterality of face processing in VTC.

We performed a targeted analysis of the same lan-
guage network parcels explored by Rajimehr et al. (2022), 
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finding that VTC LI for both face processing tasks was 
negatively correlated with language processing LI in the 
PSL, and positively correlated with social processing LI in 
STSp, only for the emotional face processing task. These 
results are broadly in line with the predictions of the long-
range-LNC account. However, in both cases, the effects 
were somewhat weak and sometimes dependent on 
using a slightly more relaxed handedness cutoff (although 
not requiring the inclusion of left handers). These weak 
effects would be expected to be quite difficult to discover 
in smaller studies, which might partially explain our inabil-
ity to find a correlation in non-VTC text LI with VTC face 
LI in our in-house data. However, in the case of social 
processing, the small effect sizes are likely also due to 
the imperfect match between the social demands 
required in the HCP task (simple theory-of-mind judg-
ments regarding the motion of simple shapes), and the 
social demands required in typical real-world face pro-
cessing scenarios. Similarly, the language coupling 
results might be weakened by the use of an auditory lan-
guage localizer task, rather than a visually based one. 
While we are not aware of any studies that have directly 
compared language network LI in corresponding visual 
and auditory tasks within individuals, both forms of the 
task have been used across studies of the language net-
work (Fedorenko et al., 2024). To the extent that differ-
ences exist across tasks, however, it might be expected 
that the visually induced laterality would couple more 
strongly with visual lateralities in VTC.

In exploratory analyses, we found somewhat stronger 
relationships between language LI and the LI for tools, as 
compared with faces. In line with our findings, tool pro-
cessing has generally been found to be left lateralized in 
humans (Chao et  al., 1999; Downing et  al., 2006; 
Johnson-Frey, 2004; Lewis, 2006), reflecting personal 
handedness and use but also the statistics of the hand-
edness of viewed tool use (Gainotti, 2015). It also corrob-
orates previous findings that distributed LI patterns for 
tool pantomiming and verb generation are highly cor-
related across individuals with typical and atypical lan-
guage lateralization (Vingerhoets et al., 2013). Indeed, the 
left lateralization of neural mechanisms underlying tool 
processing has been proposed as a causal link in the 
evolution of a left-lateralized speech controller (Frost, 
1980; Stout & Chaminade, 2012). Additionally, in our 
exploratory analyses, we found a trending correlation 
between VTC body LI and PSL language laterality, similar 
to the relationship between PSL and VTC face LI; how-
ever, no relationships were seen between body LI and 
social LIs.

4.4.  Limitations

Our results suggest that there is local lateralized compe-
tition between faces and tools in VTC, but not between 
faces and text, and long-range coupling between faces 
and social processing, as well as between text and tools 
and language processing. However, there are some 
important limitations that warrant caution in an overly 
strong interpretation of our results.

First, with respect to our null findings for reading-LNC 
predictions, responses for objects, faces, and text appear 
to meaningfully overlap—not just in estimated responses 
(which could be due to overlapping hemodynamic 
responses), but also in selectivity relative to a scrambled 
image baseline. This representational overlap made it dif-
ficult to construct unbiased selectivity contrasts. In gen-
eral, given three categories A, B, C, when comparing the 
LI of category A and B, there are four natural options: (1) 
compare A and B directly, (2) compare A − C and B − C, 
using a shared baseline to account for general activation-
increasing effects such as arousal, (3) compare A − B and 
B − A, (4) compare A − (B+C) and B − (A+C), using the 
“full” baseline which would make up a standard category 
selectivity contrast. None of these choices is ideal: option 
1 yields strongly positive correlations, due in part to the 
imperfect ability of the GLM to fully identify the true 
sources of activation, and thus partially blurring responses 
across different categories; option 2 induces a bias toward 
positive correlation due to the shared baseline; option 3 
may be meaningful due to the asymmetry imposed by 
summation of positive selectivity, but induces an obvious 
strong bias toward negative correlation; and option 4 
exhibits competing biases toward negative and positive 
correlation, which do not simply magically cancel out.

By using independent splits of data to compute each 
contrast, we were able to remove statistical bias in our cor-
relations of LI, but not category-based biases arising from 
shared categories across compared selectivity contrasts. 
We used options 1, 2, and 4 in our analyses of faces, text, 
and objects (Fig. 4). None of the options revealed compe-
tition between faces and text, whereas only option 4 
revealed competition between text and objects; however, 
this competition between text and objects appeared to be 
driven by the shared (face) baseline, as it was eliminated 
when either option 1 or 2 was used. Competition was not 
found when we replaced the sum selectivity metric with 
either of two more standard options: peak voxel selectivity 
or number of selective voxels.

In line with these ideas, the demonstration of anti-
correlated LI between tools and faces relied on having 
entirely independent contrasts (e.g., no overlapping  
conditions) across two separate experiments (WM and 
Emotion). When we used overlapping contrasts in HCP 
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(faces − places vs. tools − places), the competition was 
not observed (however, in this case, statistical depen-
dence could not be eliminated, as contrasts were built 
across only two runs collected in opposite phase-encoding 
directions). Additionally, the substantially larger size of 
HCP provides greater statistical power to discover the 
competitive relationships of interest, so the results from 
the two experiments cannot be compared directly. That 
said, the lack of trending competitive effects between 
face and text selectivity in the main experiment, and  
the corroboration of our results with prior studies 
(Davies-Thompson et al., 2016; Nordt et al., 2021), sug-
gests that statistical power was likely not an issue.

Last, while there is a clear connection between our 
results and prior literature on the overlap in mechanisms 
for tool and language processing, the associations 
between tool and language LI in this experiment must be 
viewed with caution. Many of the tool images contained 
tools with textual brand labels (e.g., DeWalt), implicitly 
encouraging participants to verbally recode while viewing 
some of the tool images and thereby driving language 
processes in the brain. To the extent that such language 
processes activate VTC (e.g., Li et al., 2023; Woolnough 
et  al., 2021), the linguistic—rather than tool-based—
properties of tool images might drive both the correlation 
in LI with language areas and the anti-correlation in local 
LI with face processing.

4.5.  Combining ideas from different theoretical 
accounts

Why might faces exhibit local competition with tools but 
not text? One relevant factor is the relatively late acquisition 
of reading, which occurs after face processing and selec-
tivity have already substantially developed (Kosakowski 
et  al., 2022; Nordt et  al., 2021), albeit certainly not fully 
(Peelen et al., 2009; Scherf et al., 2007). In contrast, humans 
explore manipulable objects and have significant experi-
ence viewing body parts and most other broad visual cate-
gories at a young age; indeed, words are an exceptional 
visual category insofar as visual expertise is introduced at a 
relatively late point in life. Prior work has demonstrated 
that the acquisition of the Devenagari script introduces  
new text response patterns without strongly interfering 
with pre-existing response patterns for other categories 
(Hervais-Adelman et al., 2019), a finding deemed “recycling 
without destruction.” This is in line with the overlap we 
found in VTC category selectivity versus a scrambled base-
line (Supplementary Fig. S1), suggesting that faces and text 
may not compete in the way that has been previously sug-
gested (Behrmann & Plaut, 2020), due to greater overlap 
than commonly appreciated. Indeed, a recent intracranial 
study in humans found that 39% of word-selective elec-

trodes in the right hemisphere and 47% of such electrodes 
in the left hemisphere could discriminate faces from the 
other object categories excluding words (Boring et  al., 
2021), indicating overlap in representations at a spatially 
precise level. Given this overlap, it would be interesting to 
re-examine how the emergence of word responses, rather 
than word selectivity, relates to prior face selectivity, during 
the acquisition of reading Roman script in English and 
French children in the datasets collected by Nordt et  al. 
(2021) and Dehaene-Lambertz et  al. (2018), respectively. 
Examining only the word-selective voxels may inherently 
exclude those voxels which gain new responses to words 
but retain strong responses to faces (Dehaene-Lambertz 
et al., 2018; Nordt et al., 2021).

If words do not induce local competition with faces in 
VTC, the previous findings of a link between literacy and 
face lateralization (Dehaene et al., 2010; Dundas et al., 
2013, 2014, 2015) need to be explained in other  
terms. The language-related or long-range-LNC account 
(Rossion & Lochy, 2022) was proposed to do just this; 
however, it does not immediately explain why face later-
alization increases developmentally after the onset of lit-
eracy. One relevant factor is the broad cortical changes 
that are seen when learning to read, including in VTC, but 
also in occipital, superior temporal, and frontal areas 
(Chyl et al., 2018; Dehaene et al., 2010; Hervais-Adelman 
et al., 2019; Monzalvo & Dehaene-Lambertz, 2013). Addi-
tionally, the acquisition of reading literacy is usually 
accompanied with the acquisition of writing, which may 
compound the effects on distributed brain circuits 
(Hervais-Adelman et  al., 2022). These global changes 
might enhance distributed competitive lateralizations 
between text-related (e.g., language) and face-related 
(e.g., social) processes, giving rise to an increase in long-
range pressures on face laterality with the emergence of 
reading, even without local recycling or competition. This 
idea is supported by a concurrent study to ours, which 
demonstrated a negative correlation between sentence 
reading LI in Broca’s area (i.e., IFG) and face LI in VTC in 
adults but not in children, where the LI in Broca’s area 
also increased over development (Liu et al., 2024).

We must emphasize that the finding of local (anti-) 
correlations in laterality indices between faces and tools/
bodies is not inconsistent with the idea that these pat-
terns are driven by long-range coupling. Indeed, as 
shown in Figure 1C, within the local-LNC theory, some 
long-range force is necessary to instigate a primary lat-
eralization which would then influence secondary later-
alizations through local interactions. The key difference 
between long-range and local LNC is that whereas long-
range LNC proposes that the competition occurs locally 
at the distal site (e.g., STSp, between language and 
social processing), local LNC proposes that both 
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competition and cooperation occur locally due to view-
ing statistics and representational characteristics. Of 
interest, one study demonstrated that both face and 
body representations in higher level visual cortex show 
reduced rightward lateralization in left handers (Willems 
et al., 2010), in line with a greater prevalence of atypical 
rightward language lateralization in left handers and 
associated reductions in tool laterality in left handers 
(Vingerhoets et al., 2013).

Based on our findings and the prior work discussed 
here, we suggest that local and long-range factors work 
synergistically to produce individual laterality patterns, 
as illustrated in Figure 9. As suggested by long-range 
LNC and reading-LNC, VTC word laterality is inherited 
through long-range coupling with left-lateralized fronto-
temporal language mechanisms. As suggested by long-
range LNC, local competition between language and 
social processing happens primarily in the STSp, lead-
ing to rightward lateralization of social processing, and 
the emergence of rightward VTC face laterality due to 
long-range coupling with social processing in the STSp. 
However, as suggested by local-LNC, the results of 
these long-range coupling influences are constrained by 

overlap and interactions of local representations across 
a broad swath of VTC. While both the long-range and 
local interactions remain incompletely specified, we 
believe attention to both of them is key to fully under-
stand the mechanisms of lateralization in VTC. Future 
work will be required to untangle the more precise con-
tributions of both local and long-range factors.

4.6.  Conclusion

Our work explores the principles of local representational 
competition and cooperation and long-range coupling 
with domain-relevant processing systems—principles 
which are essential to the theories of graded hemispheric 
specialization (Behrmann & Plaut, 2015, 2020; Plaut & 
Behrmann, 2011) and neuronal recycling (Dehaene & 
Cohen, 2007; Dehaene et al., 2010). However, it calls into 
question the claim made by both of these “reading-LNC” 
theories that VTC face laterality emerges specifically as a 
result of local competition with words, joining recent works 
(Kubota et al., 2023; Nordt et al., 2021; Rossion & Lochy, 
2022). While our results do not strictly rule out this com-
petition, we find evidence only for local competition with 

Fig. 9.  Schematic for the local and long-range lateralized neuronal competition theory, incorporating facets of both 
the local and long-range LNC accounts, based on the results of this study. The schematic emphasizes (1) that long-
range coupling between left-lateralized language (in frontal and temporal areas) and words (in VTC) contributes to the 
lateralization of words in VTC, (2) that exclusive competition between words and faces is unlikely to be a major driver 
of rightward face laterality; however, a mix of competition and cooperation between words and faces is expected due 
to their partially overlapping responses, as shown with a thin black line, (3) social processing, which may become right 
lateralized in the right STSp due to local competition with language, induces a rightward long-range lateralization pressure 
on face representations, (4) words and faces both exhibit a mix of local competition and cooperation with neighboring 
visual representations in VTC. This theory schematic is not meant as an exhaustive list of all of the interactions shaping 
the lateralization of VTC, nor all of the areas involved in processing the various stimuli and tasks; rather, it highlights that 
competition and cooperation at both local and long-range scales influence the laterality of VTC.
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tools, vis-a-vis the negative correlation between tool and 
face LIs within VTC. Instead, VTC face LI generally appears 
to be correlated with VTC object LI, body LI, and even text 
LI in some analysis approaches. Assessing the possible 
role of coupling in lateralization with distant regions, we 
find evidence that VTC face LI is both negatively cor-
related with language LI in PSL, and positively correlated 
with social processing LI in the STSp. Our work is thus 
consistent with both local and long-range lateralized neu-
ronal competition. We speculate that laterality patterns 
between other categories are similarly coupled locally and 
with downstream areas—even when those categories 
show weak group-level LI—with gradations across cate-
gories related to the overlap in their input and output 
demands. Future work may be able to take advantage of 
existing datasets to test this idea using the methods 
developed here, specifically focused on the full profile 
(size and strength) of selectivity. Additionally, the success 
of large-scale naturalistic imaging paradigms in elucidat-
ing the nature of visual representations in human VTC 
(Allen et al., 2022; Chang et al., 2019) motivates the use of 
similar approaches in a larger cohort of subjects to facili-
tate individual difference analyses that could provide 
greater clarity on the coordinated development of topo-
graphic and hemispheric organization, with particular rele-
vance to the more generic or feature-based competition 
inherent to ideas about local interactions. Last, advancing 
computational models with increasingly realistic visual 
inputs (Gan et al., 2020; Russakovsky et al., 2015), pro-
cessing mechanisms (Kubilius et al., 2018; Spoerer et al., 
2017; Yamins et  al., 2014), tasks (Bakhtiari et  al., 2021; 
Konkle & Alvarez, 2022; Mineault et  al., 2021; Nayebi 
et al., 2023; Zhuang et al., 2021), and spatial embedding 
(Achterberg et  al., 2022; Blauch et  al., 2022b; Keller & 
Welling, 2021; Margalit et al., 2024) will make it increas-
ingly possible to make quantitative predictions about rep-
resentational cooperation and competition in silico, which 
may reduce demands on—and aid the interpretation of—
costly future experiments.
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