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Mechanisms of central color vision 
Hidehiko Komatsu 

In monkey cerebral cortex, color information is processed 

along the ventral visual pathway. This pathway starts 

in the primary visual cortex and ends in area TE of the 

inferior temporal cortex. Recent studies indicate that the 

transformation of cone signals occurs early in the pathway to 

form neurons selective to a narrow range of hues. In addition, 

it has become apparent that area TE plays a vital role in color 

discrimination. 
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Abbreviations 

0 blue 

co cytochrome oxidase 

G green 

IT inferior temporal cortex 

K koniocellular 

L long 

LGN lateral geniculate nucleus 

M middle 

pLGN parvocellular layer of the LGN 

R red 

S short 

TE anterior part of IT 

Vl primary visual cortex 

Y yellow 

Introduction 
Color perception arises from the comparison of signals 

from photoreceptors with different spectral sensitivity 

functions. Macaque monkeys have three types of cone 

photoreceptors that are maximally sensitive to long (L), 

middle (hl), and short (S) wavelengths (Figure 1, stage 1). 

Comparison of signals from different types of cones occurs 

in the retinal circuit, and after a relay at the lateral 

geniculate nucleus (LGiY), color information is transmitted 

to the cerebral cortex. This review focuses on color 

processing in the cerebral cortex; however, I begin with 

a description of color-related signals in the LGN, which 

is important for understanding the input signals to the 

cerebral cortex. 

Precortical stage of color processing 
Color-opponent cells 
In the LGN, there are txvo classes of neurons with 

chromatic opponency [1,2]. One class of neurons is 

excited by red light but inhibited by green light, or 

vice velsa; these neurons are referred to as red/green 

or R/G color opponent cells. Another class of neurons 

differentially responds to blue and yellow light; these 

neurons are known as yellow/blue or Y/S color-opponent 

cells (Figure 1, stage 2). R/G color-opponent cells receive 

signals from L and hl cones in opposite polarities (i.e. +L 

-Xl or -L +Rl). Y/B color-opponent cells receive signals 

from S cones and the sum of L and hl cones in 

opposite polarities (i.e. S-[L+hl)) [2Pl]. Responses of 

these neurons to color stimuli are well represented by 

rhr linear sum of cone signals. The existence of two 

classes of color-opponent cells in the LGN indicates 

that there are only two chromatic channels at this stage 

of color processing. Krauskopf et al. [S] identified three 

cardinal directions in color space in which adaptation 

in one direction did not affect rhe detection threshold 

in the other directions. One of these is luminance 

modular_ion, lvhercas the other Iwo correspond precisely 

to the direcrions in color space to which color-opponent 

LGiX neurons are tuned [3]. Although the trvo classes of 

color-opponent LGN neurons might be associated with 

the t\vo color-opponent mechanisms proposed initially by 

Hering \6], they do not correspond to each ocher because 

Hering’s unique hues do not coincide with the directions 

of the cardinal axes. 

S cone inputs to primary visual cortex 

In the past-, it \vas generally thought that there exists a 

single subcortical pathway for color that involves midget 

retinal ganglion cells, and after a relay in the parvocellular 

layer of the LGN (pLGN), terminates in layer 4C(3 or 

4A of the primary visual cortex (Vl). Recent studies 

indicate that there exists another pathway for color that 

involves interlaminar (koniocellular, or K) layers of the 

LGN located ventral to each principal layer. A distinct 

retinal ganglion cell type, the small bistratified cell [7], 

receives excitatory inputs from S cones (81 and projects 

to the K layers of the LGN (RC Reid, JM Alonso, 

SHC Hendry, Sot AJeurosci A&r 1997, 23:13). Neurons 

in K layers, in turn, project to cytochrome oxidase (CO) 

blobs in layers 2 and 3 of Vl (19,101; see also [ll]). 

Neurons chat are activated by modulation of S cone signals 

are found in and around K layers of the LGN ([12,13*]; 

RC Reid, Jhl Alonso, SHC Hendry, SocNeurusciAbstr 1997, 

23:13). Thus, these experiments provide converging lines 

of evidence that color-opponent signals sensitive to S cone 

excitation are transmitted to the cortex, at least in part, 

through direct input to the CO blobs in Vl via the K layers 

of the LGN. 

Early cortical mechanisms 
Color selectivity of Vl neurons 

It has been shown rhat color-selective Vl neurons have 

receptive field structures that are not found in the 

LGN: some Vl neurons exhibit orientation selectivity as 

well as color selectivity [14,15], whereas others exhibit 
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Hypothetical scheme of color processing at different stages along the visual pathway. Five different stages are shown. The first stage consists 

of three types of cone photoreceptors (S, M and L). In the second stage, there are two classes of color-opponent cells (Y/B and R/G). The 

outputs of color-opponent cells are linearly combined in the primary visual cortex (Vl) to form neurons tuned to various directions in color space 

at the third stage. Nonlinear interactions of the signals from these neurons occur at the fourth stage, which involves Vl and V2, and cells tuned 

to a narrow range of hue or saturation are formed. The effect of illumination is discounted at the fifth stage, which involves V4, to form neurons 

whose responses parallel the perceived surface color as a result of color constancy. Different color processing stages in the cortex are indicated 

by different shadings. 

double opponency [16,17] or broadband suppression from Lennie et a/. [Zl] studied the responses of Vl neurons 

the receptive field surround [18]. With regard to the to modulation of color along various directions in color 

specificity to color, however, a clear distinction between space. They found that the direction in color space in 

the LGN and Vl is not indicated by experiments testing which maximum activation occurs differed from cell to 

spectral sensitivity or wavelength-response relation using cell. This is clearly different from the LGN, in which 

monochromatic lights. Though spectral bandwidth differs the preferred direction coincides with the cardinal axes 

from cell to cell, most neurons seem to have a peak of the color space. Other recent studies have also shown 

sensitivity to red, yellow, green, or blue colors [l&20]. that preferred color is variable across different Vl neurons 

More recently, experiments using color stimuli based on ([Z?]; A Hanazawq I Murakami, H Kondo, H Komatsu, 

color space revealed a clear difference in color specificity Sot Neurosci Abstr 1997, 23: 1026). Many psychophysical 

between Vl and LGN. studies suggest the presence of higher-order chromatic 



Mechanisms of central color vision Komatsu 505 

mechanisms tuned to more than two directions in color 

space [23-751, and the variety of color preferences 

observed in Vl is consistent with this suggestion. 

Linear summation of cone signals 

Both perceptual color space (e.g. Krauskopf’s color space; 

SW [S]) and cone space, which represents the activation of 

three types of cones, are three dimensional and are related 

by a linear transformation. Thus, the responses mapped 

in color space provide useful information for estimating 

the input cone signals to a given neuron. Lennie it 

al. [21] examined the color selectivity of Vl neurons 

by modulating stimulus color along various directions 

in color space and found that the activities of most 

neurons change in a regular way, indicating that these 

neurons receive inputs that are the linear sum of the cone 

signals. Color-selective LGN neurons behave in the same 

manner [.3]. 

\Vhen the responses of such neurons to various iso- 

luminant colors are plotted on a chromaticity diagram 

(e.g. Commission Internationale de I’Eclairage [CIE] 

xy chromaticity diagram), the contour line connecting 

positions Tvith the same response magnitude was logically 

expected to be aligned on a straight line [26]. \Ve 

found this to be the case for nearly all color-selective 

neurons examined in the LGN, and also for many 

color-selective \‘l neurons (A Hanazawa, I hlurakami, 

H Kondo, H Komatsu, Sor ~l’rruos~i Abs;rrr 1997, 23:1026). 

In these studies, holvever, a clear difference was found 

between LGN and Vl with regard to the relative weights 

tvith lvhich different types of cone signals fed into each 

neuron. In contrast with the LGN, lvhere only a limited 

number of combinations of cone signals are observed, 

relative weights of cone signals differ from cell to cell 

in Vl. These results suggest that the outputs of the two 

classes of color-opponent cells (i.e. R/G and Y/B cells) in 

the LGN are linearly combined in Vl with various weights 

to form color-selective neurons tuned to various directions 

in color space (Figure 1, stage 3). De Yalois and colleagut% 

(27,28’] have proposed a model that assumes that signals 

from Y/B cells in the LGN are linearly combined with 

the signals from R/G cells at some cortical stage to form 

neurons tuned to unique hues. Their model is consistent 

with the observation that the outputs from LGN neurons 

are linearly combined in Vl, though combinations of LGIi 

signals are not limited, as their model would predict. 

Similarly, when color selectivity of neurons in areas \‘2 and 

\‘3 were examined using a method very similar to those 

used by Derrington eta/. [3] and Lennie eta/. [Zl], it was 

observed that neurons in these areas, which are driven by 

linear combinations of cone signals, are tuned to various 

directions in color space [29,30**,31*]. 

Nonlinear interaction of cone signals 

In the study mentioned above, Lennie rl al. [Zl] found 

that a few Vl neurons had sharp color selectivity, which 

cannot be explained as a linear combination of cone 

signals. They noted that they may have underestimated 

the proportion of such neurons in their work. Recent 

studies have confirmed the existence of such neurons 

(A H anazawa, I hlurakami. H Komatsu, Sac &UVSC~ 

Al/srr 1996, 22:640; KP Cottaris, SD Elfar, LE Mahon, 

RI, De \‘alois, Sor ~Veurusci Ahtr- 1997, 23:13). In our 

experiment, a significant proportion of neurons had 

responses that clearly produced curved contour lines in 

chromaticity diagrams, suggesting a nonlinear interaction 

of cone signals (Figure 1, stage 4). Some of these neurons 

exhibited selectivity to a particular hue or saturation. 

Nonlinear interactions of cone signals should have a key 

role in forming selectivity to specific hues or saturation. 

These experiments suggest that such a process starts to 

take place in Vl. 

Sato et al. [32] found that wavelength tuning of neurons 

in CO blobs was considerably broadened following 

iontophoretic administration of bicuculline. This finding 

suggests that these Vl neurons receive excitatory input 

signals from various types of cones, and that sharp 

wavelength tuning occurs as a result of intracortical 

inhibitory mechanisms. 

In 1’2, the proportion of nonlinear neurons increases 

compared to Vl [29,30”]. These neurons are tuned to a 

narrower range of hues than are linear neurons. In V3, in 

contrast with V2, responses of neurons are consistent with 

the linear model [31*]. 

Higher cortical mechanisms 
V4 and color constancy 

In humans, it is thought that there is a cortical site that 

plays a central role in color perception, because damage to 

the ventromedial extrastriate cortex causes a severe deficit 

in color perception (known as cerebral achromatopsia). In 

monkey cortex, area V4 has many color-selective neurons 

[33,34], and several studies have examined the effect of 

V4 lesions on color discrimination behavior [35-37). It was 

found that lesions of V4 induce only a very mild deficit in 

color discrimination; however, they severely disrupt color 

constancy [37,38]. In addition, it has been reported that 

responses of \‘4 neurons correlate with the color perceived 

as a result of color constancy rather than the color reflected 

from the stimulus surface [39]. 

For color constancy to occur, the effect of illumination 

must be discounted from the light reflected off the 

object surface. It is not yet known how the information 

about illumination is represented in the visual system. 

\‘4 neurons have a large suppressive surround, which 

functions most effectively when the receptive field center 

and surrounds are stimulated by the same spectral light 

[34]. It is proposed that such a receptive field structure 

might have an important role in discounting the effect 

of illumination [40]. On the basis of such an assumption 
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Figure 1 illUZ.trdteS that information about illumination is 

fed into V4 (Figure 1, stage 5); however, this does not 

imply that such information is represented explicitly. 

Inferior temporal cortex and color discrimination 

The inferior temporal (IT) cortex, the final stage of 

the ventral cortical visual pathway, also possesses man) 

color-selective neurons [41]. These neurons are selective 

to both hue and saturation, and they have clearly curved 

response contours on chromaticity diagrams, suggesting 

that inputs to these neurons are a nonlinear combination 

of cone signals [26]. In monkey, some IT neurons 

exhibit sustained activity while a particular color is kept 

in memory during a delayed matching to sample task 

[42]. Recently, functional imaging of the monkey brain 

with positron emission tOnlOgKlphy revealed that a color 

discrimination task activates IT cortex (4.3’1. 

Although it has been sporadically reported that damage in 

IT causes severe deficits in color discrimination [44,4.5], 

these results have been largely neglected. Several recent 

studies have confirmed these earlier reports. Horel [46] 

found that cooling area ‘1-E severely disrupts even a 

very easy color discrimination task, though the deficit 

was temporary Heywood ~tn/. [47] made bilateral lesions 

of IT to study the effects on a hue discrimination task 

in which an odd color stimulus must be detected out 

of eight other simultaneously presented colors, a similar 

gray discrimination task, and a hue detection task in 

which one chromatic stimulus must be detected out of 

eight gray stimuli varying in luminance. Preoperati\,ely. 

the gray discrimination task was slightly more difficult 

than the hue discrimination task. Postoperatively, however, 

performance on both the hue discrimination and hue 

detection tasks ~1~s severely disrupted, bur only a mild 

d&it was observed in the gray discrimination task. hlore 

recently, Buckley YT N/. [48**] compared the effects of 

bilateral ablation of area TE of the IT cortex and pcrirhinal 

cortex using a task in which the same green stimulus must 

be discriminated from tight other stimuli differing in hue 

or saturation. The monkey with the 1’E lesion could not 

relearn the task, suggesting that area TE plays a vital role 

in color discrimination. 

A possible role for the inferior temporal cortex in color 
categorization 
Although color changes continuously in color space, it is 

recognized categorically. The range of colors designated by 

eleven basic color names (red, orange, yellow, green, blue, 

purple, pink, brown, white, black and gray) are similar 

across different races [49,jO], and between humans and 

chimpanzees [jl]. it is likely that there is a biological 

foundation for this phenomenon. Dean [44] proposed that 

IT cortex might be responsible for categorical perception 

of color. Heywood ut nL. 14.51 suggested that this may 

explain the difference in the effect of IT lesions on color 

discrimination and gray discrimination, because color, but 

not gray, is perceived categorically. 

In IT cortex, there are neurons that selectively respond ro 

a range of colors similar to those designated by basic color 

names [SZ’]. As mentioned above, nonlinear processing of 

cone signals required to form such color selectivity starts 

in early cortical areas; thus, it is not clear whether IT is 

important for the formation of color selectivity itself. One 

possibility is that IT cortex has templates corresponding 

to color categories and that IT cortex is involved in 

processes that match a stimulus color to one of these 

templates and t-hat determine the color category to which 

a given stimulus belongs. Such an idea is consistent with 

the notion that IT cortex has an important role in the 

formation of prototypes of visual stimuli [X3,54]. 

Conclusions 
Although we can perceive an almost infinite varier) 

of colors. they can be basically described using only 

three parameters. This provides a great advantage over 

other visual attributes, such as shape, for systemic stud) 

of neural representation. Through the efforts of many 

researchers, only a few of which are summarized in 

this review, we are now able to trace color processing 

from rhe retina to higher cortical areas. Further studies 

are necessary, however, to understand chr details of the 

processing at each stage and the interactions berwcen 

different stages. The process of interactions bec\veen 

signals from different types of cones within the retinal 

circuit has recently been studied in detail [Sj-571, bur 

future studies arc needed to understand ho\v nonlinear 

intcrdctions of cone signals occur in the early cortical 

areas. In the higher cortical areas, the mechanisms of color 

constancy and color categorization arc important area? for 

future research. 
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