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Visual object recognition is thought to depend on experience-
induced changes in inferotemporal (IT) cortex, such that neurons
become more selective for (or more responsive to) learned
images1–4. This view is consistent with evidence showing that lesions
in IT interfere with pattern recognition5,6, that neurons in IT are
pattern- selective5,6 and that IT is a site of experience-dependent
plasticity. Plasticity has been shown in IT by the use of three
approaches: (i) repeated exposure to a stimulus over a short period
of time leads to a decline in response strength7–10, (ii) prolonged
training on a visual paired associate task results in the emergence
of neurons that are responsive to both members of the pair11–13

and (iii) discrimination training. Training monkeys to discrimi-
nate among images is thought to induce changes in the strength
and selectivity of neuronal responses to those images, but studies
to date have produced contradictory and inconclusive results. On
the one hand, some neurons seem to become markedly selective
for learned images. For example, in a study of monkeys trained to
discriminate among wire objects14,15, several units showed “a
remarkable selectivity” for individual views that the monkey had
learned to recognize. On the other hand, two studies involving a
single day16 or several months17 of training do not show evidence of
enhanced selectivity for images in the training set. In another
study18, discrimination training resulted in a subtle enhancement of
stimulus selectivity at the population level, but this effect was shown
by comparing trained to untrained monkeys rather than by com-
paring responses to learned and unlearned stimuli in the same mon-
key. Thus, innate differences between monkeys may have
contributed to the result. Finally, learned images have been report-
ed to elicit higher firing rates than unlearned images18–20.
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Here we investigated the impact of visual discrimination training on neuronal responses to parts of
images and to whole images in inferotemporal (IT) cortex. Monkeys were trained to discriminate
among ‘baton’ stimuli consisting of discrete top and bottom parts joined by a vertical stem. With
separate features at each end, we were able to manipulate the two parts of each baton
independently. After training the monkeys, we used single-cell recording to compare neuronal
responses to learned and unlearned batons. Responses to learned batons, though not enhanced in
strength, were enhanced in selectivity for both individual parts and for whole batons. Whole-baton
selectivity arose from a form of conjunctive encoding whereby two parts together exerted a greater
influence on neuronal activity than predicted by the additive influence of each part considered indi-
vidually. These results indicate a possible neural mechanism for holistic or configural effects in
expert versus novice observers.

An important question not addressed in previous studies is
whether discrimination training enhances neuronal selectivity for
whole images or for the parts of those images. This question is
particularly relevant to the idea that experts process images in a
qualitatively different way from novices, placing more weight on
wholes and less on parts21,22. It has been suggested that this abil-
ity arises from IT neurons that become selective for combinations
of features contained in learned images—neurons for which “the
whole is greater than the sum of the parts”23–25. To show the exis-
tence of such neurons, the following are required: (i) the parts
used in the experiment must be far enough apart so that juxta-
positional features do not emerge where they abut, (ii) the parts
must be manipulated independently and systematically, and (iii)
the effect on neuronal activity of manipulating the parts together
must be stronger than the summed effects of manipulating them
individually. Experiments in which removal of part of a complex
image causes a marked reduction in neuronal visual response
strength26–30 do not meet these requirements.

To test for the occurrence of nonlinear part–part interactions,
we used baton-shaped stimuli that consisted of two distinct ele-
ments joined by a vertical stem (Fig. 1a). The batons were orga-
nized into tetrads representing the four possible combinations
of two top and two bottom parts. By monitoring neuronal
responses elicited by the batons in these tetrads, we were able to
determine whether the neuron was selective for the parts (the fir-
ing rate could be modeled as the sum of independent responses
to the top and bottom elements) or for the wholes (the firing rate
depended nonlinearly on the conjunction of top and bottom ele-
ments). To assess the impact of learning on selectivity for parts
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and wholes, we trained monkeys to discriminate among batons
within tetrads, setting up the stimulus-response associations so
that the monkeys had to take into account the conjunction of
parts in each baton in order to perform above chance (Fig. 1a).
Each monkey was trained on two tetrads of batons. Tetrads
learned by one monkey were used as unlearned controls for the
other monkey so that effects that were due to the intrinsic prop-
erties of the stimuli could be dissociated from the effects of train-
ing. Once the monkeys were able to perform the task (Table 1),
we carried out single-neuron recording in IT (Fig. 1b). In each
neuron, we directly compared the visual responses elicited by
learned and unlearned batons. The results indicate that IT neu-
rons are more selective for learned stimuli, both at the level of
individual parts and at the level of whole batons.

RESULTS
Magnitude and selectivity of neuronal responses
To compare neuronal responses to learned and unlearned batons
under identical conditions, we collected data while monkeys
maintained steady fixation without generating lever responses.
First, we briefly assessed responses to all 16 batons; then we used
the learned and unlearned tetrads that elicited the strongest
responses for the first session of data collection. If possible, we
followed up with a second session involving the less effective
learned and unlearned tetrads. (Note that the term ‘session’ as
used here and throughout the paper denotes collecting data on
neuronal responses to batons in one learned and one unlearned
tetrad). During a session, batons from the learned and unlearned
tetrad were presented foveally in pseudorandom, interleaved
sequence until 16 trials had been completed for each baton, for a
total of 128 trials. In each of 502 sessions involving a total of 360
neurons, at least one of the eight batons elicited a significant visu-
al response (Table 2).

We first asked whether IT neurons respond more strongly to
learned than to unlearned batons. We computed, for each ses-
sion, the mean firing rates elicited by the best learned baton and

the best unlearned baton (‘best’ denotes the baton that elicit-
ed the strongest response of the four in the tetrad). The dis-
tribution of values obtained across all sessions (Fig. 2) shows
that the average response elicited by the best learned baton
was not significantly different from the average response
elicited by the best unlearned baton (monkey 1: unlearned,
13.36 spikes/s; learned, 13.24; P > 0.7 paired t-test; monkey 2:
unlearned, 10.89 spikes/s; learned, 11.07; P > 0.5 paired t-
test). This finding stands in contrast to previous reports of
enhanced response strength for learned stimuli18–20.

We next asked whether selectivity for batons in learned
tetrads was enhanced relative to selectivity for batons in
unlearned tetrads. To address this issue, we examined how
sharply response strength fell off from the best baton to other
batons in a tetrad. For each session, we ranked batons in the
learned tetrad according to the strength of the elicited visual
response and did the same for batons in the unlearned tetrad.
Then, to eliminate any effect of absolute response strength,
we normalized the response elicited by each of the three low-
ranked batons to the response elicited by the best baton in
the tetrad. On combining the results from all sessions 
(Fig. 3a and b), we found that low-ranked batons in learned
tetrads elicited weaker normalized responses than low-ranked
batons in unlearned tetrads. Thus, firing fell off more sharply
from the best baton to other batons in learned compared to
unlearned tetrads, indicating that neurons were more sharply
tuned for batons in learned tetrads. To assess the significance

of this effect, we carried out a repeated measures ANOVA across
all sessions, with normalized response strength as the dependent
variable, and with training status (learned or unlearned) and
rank (2, 3 or 4) as factors. Rank-1 batons were excluded from
this analysis because there was no variance in rank-1 values after
normalization. Rank was included as a factor to assess whether
the effects of training varied across rank. In each monkey, there
was a significant main effect of training status: learned batons
below rank 1 elicited weaker normalized responses than
unlearned batons below rank 1 (monkey 1, P < 0.00001; mon-
key 2, P < 0.035). Post-hoc analyses revealed that the effect was
significant at all ranks in monkey 1 and at two of three ranks in
monkey 2 (asterisks in Fig. 3a and b). The mean difference in
responses elicited by rank-1 and rank-4 learned batons was 
5.5 spikes/s (versus a 4.5 spikes/s mean difference for unlearned
batons). The finding that neurons were more selective for batons
in learned tetrads cannot be explained in terms of the visual
attributes of the batons because the tetrads that were learned by
monkey 1 were unlearned for monkey 2, and vice-versa. The dif-
ference between subjects in the strength of this effect, however,
could well be explained by the batons’ visual properties. We there-
fore place little weight on inter-monkey differences in effect

ba I

III
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IV

Left lever Right lever

Fig. 1. Baton stimuli and recording location. (a) Four tetrads of batons
were used in discrimination training. Monkey 1 was trained on tetrads I and
II and monkey 2 on tetrads III and IV. The batons that were used for training
for one monkey were also used as unlearned controls for the other mon-
key. Batons requiring right- and left-lever responses are indicated by white
and gray backgrounds, respectively, although during experiments, the back-
ground was constant. (b) Coronal (top) and sagittal (bottom) magnetic res-
onance images showing recording locations in the right hemisphere of
monkey 1. The dark line running through the cortex is a shadow surround-
ing an electrode that was placed at the most medial recording site.

Table 1. Discrimination task performance.

Monkey 1 2

Tetrad I II III IV

Reaction time (ms):
mean (s.d.) 366 (29) 368 (29) 325 (22) 314 (22)
Percentage correct:
mean (s.d.) 86 (11) 91 (9) 94 (9) 96 (7)

Performance of monkey 1 was assessed during physiological data collection
sessions. Data for monkey 2 are from behavioral training sessions on the
three days immediately prior to recording. Number of sessions for tetrads I,
II, III and IV were 26, 28, 42 and 42, respectively.
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that the effects of attention become prominent only when mul-
tiple stimuli compete to control neuronal activity31.

Selectivity for parts or wholes?
Enhanced selectivity for learned batons could arise from either a
part-based or a whole-based mechanism. If a neuron’s activity
was affected consistently by the identity of a part at a given loca-
tion on the baton, regardless of the feature at the other end of the
baton, this indicated part-based selectivity. Some neurons,
although responsive, were not selective (Fig. 4a). Other neurons
were selective either for a part at just one location (Fig. 4b), or for
the parts at both locations (Fig. 4c). To determine how frequent-
ly part-based selectivity occurred, we performed separate ANOVAs
on responses to the learned and unlearned tetrads in each session,
with identity of the top part and identity of the bottom part as
factors and with the square-root transformed firing rate as the
dependent variable (Fig. 4d–f). Out of 1,004 cases in which the
identity of a part at a given location on a learned baton could have
affected neuronal activity (502 sessions × 2 locations), there were
366 cases (36%) in which a significant (P < 0.05) main effect was
present. For unlearned batons, a significant main effect was pre-
sent in only 293 cases (29%). In monkey 1, the higher incidence of
selectivity for learned as compared to unlearned parts (43% ver-
sus 35%) was significant (χ2 test, P < 0.0024). In monkey 2, the
effect was of slightly greater magnitude, considered as a ratio of
percentages (23% versus 18%), but did not attain significance
because the number of observations was smaller (χ2 test, 
P < 0.075). Because the ratio between the learned and the
unlearned percentages was not significantly different between the
monkeys (χ2 test, P > 0.9), we carried out a test on the combined
data, which revealed a highly significant effect (χ2 test, P < 0.0005).
We conclude that neuronal selectivity for individual parts was
modestly enhanced for learned as compared to unlearned tetrads.

Having established that IT neurons were more selective for
parts within learned tetrads, we asked whether they were more
selective for batons considered as wholes. We took as a measure
of whole-based selectivity the number of sessions in which the
firing rate depended significantly on the interaction between top-
part identity and bottom-part identity, as revealed by the two-

strength. We conclude that IT neurons, considered as a popula-
tion, responded more selectively—but not necessarily more
strongly—to learned batons.

The increase in selectivity measured across the entire popu-
lation might reflect a moderate shift in many neurons or a dra-
matic shift in a few. To distinguish between these possibilities,
we computed, for each session, an index of selectivity, (b – w)/(b
+ w). The variables b and w are firing rates elicited by the best
and worst batons in a tetrad. We found that the general pattern of
the frequency distribution was similar for learned and unlearned
batons (Fig. 3c). However, the learned distribution (median,
0.285) was shifted to the right (in the direction of greater selec-
tivity) relative to the unlearned distribution (median, 0.229).
This effect was significant in both monkeys (Wilcoxon matched
pairs test: monkey 1, P < 0.000001; monkey 2, P < 0.03). Criti-
cally, we did not observe a second mode at the high end of the
scale, as would have been created by a few neurons with a
markedly enhanced selectivity for learned images. This finding
stands in contrast to previous reports of neurons that are highly
selective for particular learned images14,15. We conclude that
training exerted a moderate effect on the stimulus selectivity of
many IT neurons, not a dramatic effect on the selectivity of a few.

To determine whether responses to learned batons were affect-
ed by task context, we compared responses elicited by a learned
tetrad during both fixation and discrimination task performance.
This analysis was based on 47 cases involving monkey 1 in which
responses of the same neuron to the same stimuli were charac-
terized in both tasks. To take into account the briefer presenta-
tion of the baton in the discrimination task, we confined the
period of analysis to the epoch 130–230 ms after stimulus onset.
This epoch began at the onset of the population response and
continued for 100 ms (the duration of baton presentation in the
discrimination task). To determine whether response magnitude
differed systematically between tasks, we compared discharge
rates elicited in fixation and discrimination contexts by the best
baton in the tetrad. The mean firing rate during fixation was
17.71 spikes/s as compared to 17.84 spikes/s during task perfor-
mance. The difference was not significant (paired t-test, P > 0.89).
To determine whether the degree of selectivity depended on task
context, we compared the selectivity index (defined above)
between tasks. The mean values were 0.389 in fixation and 0.342
in discrimination—not significantly different (Wilcoxon matched
pairs, P > 0.21). We conclude that the magnitude of the response
and the degree of selectivity were hardly affected by task context,
if at all. This result is consistent with previous reports indicating

Table 2. Neuron and session counts.

Total Visually
responsive

Monkey 1 Neurons 330 243
Sessions 507 331

Monkey 2 Neurons 202 117
Sessions 301 171

The number of data collection sessions was greater than the number of
neurons studied because some neurons were used in two sessions that
involved different pairs of learned and unlearned batons. Sessions that met
the criterion of significant visual responsiveness were included in
subsequent steps of data analysis.
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Fig. 2. Response to the best learned baton plotted against response to
the best unlearned baton. Each point represents data from a session
assessing the responses of one neuron to four batons from a learned
tetrad and four batons from an unlearned tetrad. The ‘best’ baton in
each tetrad was defined as the one eliciting the strongest response.
There was no significant tendency in either monkey for responses
elicited by the best learned baton to exceed those elicited by the best
unlearned baton (paired t-test: monkey 1, P > 0.7; monkey 2, P > 0.5).
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factor ANOVA described above. An interaction effect indicated
that the neuron was sensitive to the particular conjunction of parts
in a baton. Interaction effects were twice as common for learned
(18%) than for unlearned (9%) tetrads (Fig. 5a). This effect was
significant in both monkeys (χ2 test; monkey 1, P < 0.0004; mon-
key 2, P < 0.026), did not differ between monkeys (χ2 test, 
P > 0.9) and became highly significant when data from the mon-
keys were combined (χ2 test, P < 0.0001). We con-
clude that training led to enhanced selectivity for
whole batons and not just for individual parts.

Interaction effects could take a variety of forms,
including selectivity for a single baton (object-type

Fig. 4. Selectivity for the individual parts of learned batons
was enhanced relative to selectivity for individual parts of
unlearned batons. The two-way ANOVA with top part and
bottom part as factors could yield any of three outcomes as
shown here: selectivity (a) for neither part, (b) for one part
or (c) for both parts of the batons in a tetrad. Each set of
four histograms represents the responses of one neuron to
batons from one tetrad. Traces are aligned on the onset of
the 500-ms stimulus (vertical line). The duration repre-
sented by the entire horizontal axis is 2,000 ms. The trian-
gle at the base of the raster indicates time of reward
delivery. The icon above each set of histograms summarizes
the pattern of significant selectivity. (d–f) Counts of ses-
sions in which neurons showed no main effect (d), one main
effect (e) or two main effects (f) of part identity for batons
belonging to learned (black) or unlearned (gray) tetrads in
monkey 1 (uniform texture) or monkey 2 (hatched).

pattern, Fig. 5b) and selectivity for batons that were associated
with the same response although they shared no parts (response-
type pattern, Fig. 5c). To characterize the type of interaction in
each neuron showing a significant interaction effect, we com-
puted a normalized measure of the difference between the firing
rates elicited by the most effective baton and the baton sharing
no parts with it (Methods). This pattern-of-interaction index
assumed a value of 4.00 in the case of a pure object-type pattern
(one baton eliciting a stronger response than the other three) and
of 0.00 in the case of a pure response-type pattern (two batons
with no parts in common eliciting equally strong responses). Val-
ues for learned batons (median, 2.96) were centered closer to
4.00, whereas those for unlearned batons (median, 1.63) were
centered closer to 0.00 (Fig. 5d). The offset between the two dis-
tributions was significant (Kolmogorov-Smirnov test, P < 0.01).
Thus, the increase in interaction effects induced by training was
disproportionately great for object-type effects. We conclude that
learning enhanced the tendency for neurons to respond selec-
tively to just one of the batons in a learned tetrad.
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Fig. 3. Selectivity was enhanced for learned as compared to unlearned
batons. (a, b) Bars represent mean normalized strengths, across all ses-
sions, of neuronal responses to learned batons (black) and unlearned
batons (gray) for monkey 1 (a) and monkey 2 (b). For each session,
batons in the learned tetrad were ranked from the most effective (1) to
the least effective (4). The same was done for the unlearned tetrad.
Firing rates were then normalized to the firing rate elicited by the baton
in rank 1 of the corresponding tetrad. The mean firing rate at each rank
of each tetrad was then computed across all sessions. Error bars repre-
sent standard error of the mean (s.e.m.). Asterisks indicate the level of
significance of the difference between learned and unlearned firing rates
at each rank in each monkey, as determined by a post hoc analysis (Tukey
HSD, **P < 0.0001, *P < 0.02). (c) Enhancement of selectivity was
accomplished by a subtle shift affecting the entire population rather than
by the emergence of a few highly selective neurons. Graph shows distri-
bution across all sessions of index values representing selectivity within
learned (black) and unlearned (gray) tetrads. Index of selectivity = 
(b – w)/(b + w) where b and w are firing rates elicited by best and worst
batons in the tetrad. The rightward shift for learned batons was signifi-
cant in both monkeys (Wilcoxon matched pairs test: monkey 1, 
P < 0.000001; monkey 2, P < 0.03).
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The above estimates of part-based and whole-based selectiv-
ity may be low. If a neuron’s receptive field (RF) did not encom-
pass both ends of a baton, then the neuron could fall only into
the nonselective category or into the category of showing a main
effect for one part. To estimate how often this occurred, we took
advantage of the principle that if an end of a baton fell outside the
RF, then it would do so both for the learned and for the unlearned
tetrad. Reasoning from the degree of concordance between results
obtained with learned and unlearned tetrads (Methods), we esti-
mated that 78% of the neurons in our sample had RFs that
encompassed both ends of the baton. This estimate is commen-
surate with results from a previous study indicating that 80% of IT
neurons have RFs of 5° or larger32. We conclude that the true inci-
dence of selectivity was greater than the measured incidence by
up to 20%. It should be noted that this was equally true for both
learned and unlearned batons, so it cannot account for the
observed learning-related effects.

DISCUSSION
To characterize the impact of discrimination training on neu-
ronal selectivity for parts and wholes of images, we analyzed visu-
al responses to learned and unlearned baton stimuli. The results
point to four main conclusions: (i) neurons respond equally
strongly on average to their preferred learned and unlearned
batons, but (ii) they respond more selectively to learned batons,
and this effect is evident (iii) in a modest enhancement of selec-
tivity for the individual parts and (iv) in a marked enhancement
of selectivity for combinations of parts. These effects constitute a
possible neural mechanism for visual expertise, which is often
attributed to greater reliance on configurations or conjunctions
of elements as contrasted to individual elements.

The finding that learned and unlearned batons elicit responses
of equivalent magnitude stands in contrast to previous reports that
discrimination training enhances response strength. Some of these
results19,20, however, are from neurons selected on the basis of their
responsiveness to learned stimuli. The selection procedure may

have biased the outcome. Others18 are based on a comparison
between trained and untrained monkeys. Thus the findings could
have arisen from inter-individual differences rather than from the
effects of training. They may also have been specific to recording
under anesthesia. However, it remains possible that the training
procedures differed from those used here in some way that favored
the development of stronger responses to learned stimuli.

The finding that neurons discriminated more effectively
between learned than between unlearned batons is in accord with
several previous reports based on prolonged pattern-
discrimination training14,15,18. This finding can be reconciled with
negative results obtained in a few other studies by reference to
fundamental differences in behavioral methodology. The train-
ing regimen used in one study16 was very brief, spanning rough-
ly a day; in another study17, monkeys were trained on a task
requiring the discrimination of grating orientation, a skill to which
IT may not contribute. With respect to the nature of the changes
that mediated the enhancement of selectivity in our study, there
are two notable points. First, the enhancement, although modest
at the level of individual neurons, was widespread. This observa-
tion is consistent with results from an earlier systematic study18

and is fundamentally at variance with the widely held view14,15

that a few neurons become highly selective for learned images.
Second, the learning-induced enhancement of selectivity may have
arisen from a subtle reduction of each neuron’s responses to its
nonpreferred images. This would be consistent with previous spec-
ulation that response reduction mediates repetition-induced
increases in selectivity9. Some uncertainty remains on this point
because the reduction in responses to nonpreferred stimuli,
although significant in both monkeys with response magnitude
normalized to the firing rate elicited by the best baton, was sig-
nificant in only one monkey without normalization.

The finding that selectivity for the parts of learned images was
modestly enhanced is without precedent because previous studies
have not used visual stimuli allowing selectivity for parts to be ana-
lyzed separately from selectivity for wholes. In monkeys trained to

Fig. 5. Learning enhanced the tendency of neurons to respond selectively to just one baton within a tetrad. (a) Counts of sessions in which a two-
way ANOVA with top part and bottom part as factors yielded evidence of a significant nonlinear interaction between the influences of top and bot-
tom parts. For learned tetrads (black) as compared to unlearned tetrads (gray), significantly more interaction effects occurred (**P < 0.0001, χ2 test).
(b, c) Neurons showing significant interaction effects occupied a continuum extending from ‘object-type’ cases (b, one object elicited a particularly
strong discharge) to ‘response-type’ cases (c, batons sharing no parts, but associated with the same behavioral response, elicited equal responses). 
(d) Cumulative frequency, with respect to a pattern-of-interaction index, of all cases in which firing rate depended significantly on a nonlinear inter-
action between the identity of the top part and the identity of the bottom part. Thick curve, learned tetrads; thin curve, unlearned tetrads. Index =
(x1 – x4)2/V, where x1 and x4 were the firing rates elicited by the best baton and the baton sharing no parts with it, respectively; V was the variance
across the firing rates elicited by the four batons (Methods). Note that the curve for learned tetrads (thick) was shifted, relative to the curve for
unlearned tetrads (thin), away from 0.0 (the value associated with a pure response-type pattern) and toward 4.0 (the value associated with a pure
object-type pattern). This effect was significant (P < 0.01, Kolmogorov-Smirnov test). Index values for neurons in (b) and (c) are indicated by arrows.
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categorize images on the basis of parts at certain internal loca-
tions33, IT neurons are especially selective for parts at those loca-
tions. However, this result can be explained, without recourse to
a mechanism based on plasticity in IT, by supposing that monkeys
simply learned to attend to the relevant locations. That neuronal
activity in IT is controlled by attended elements of a display is well
known34. Furthermore, the parts at the task-relevant locations
(which were the same in all monkeys) may have been inherently
more distinctive. The current results can be accounted for neither
by supposing that monkeys learned to attend to the ends of the
batons (this would have had an identical impact on responses to
learned and unlearned batons) nor by supposing that the parts of
learned batons were innately more distinctive (we counterbalanced
across monkeys which batons were learned and unlearned) .

Selectivity for whole images, based on nonlinear interactions
between parts, has not been examined in previous studies either of
learned or of unlearned stimuli. It is well known that removing
even a small part from a neuron’s preferred image can cause a
drastic reduction in responsiveness26–30. One might suppose, given
that the residual image does not elicit a strong response, that the
part in isolation does not elicit a strong response, and that the two
together do elicit a strong response, that their influences combine
nonlinearly in driving neuronal activity. However, in all such cases,
the possibility exists that the neuron is selective for a juxtaposi-
tional feature in the region where the part and the residual image
abut. An example of a juxtapositional feature is the T-junction
where two orthogonal contours come together. Only by manip-
ulating discrete and distant features, such as those at opposite ends
of a baton, is it possible to circumvent this problem.

Our findings on whole-baton selectivity offer an incidental
insight into the representation of category membership. IT neu-
rons selective for specific combinations of parts might have pre-
ferred a single baton within a tetrad or, conversely, two batons
sharing no parts but associated with a common lever-response
(batons diagonally opposed in Fig. 1a). We found that learning
enhanced the tendency for neurons to prefer one object out of
the four, but not to prefer objects in a common response cate-
gory. Previous studies have also shown that neurons in IT are not
often selective for category membership of disparate stimuli as
determined by their arbitrary association with motor respons-
es35,36. For category-based selectivity to appear in IT, it may be
necessary that stimuli in a category be visually similar, as are
images of trees37 or dogs38,39.

That discrimination training enhanced the selectivity of neu-
rons in IT for whole batons is compatible with the theory that per-
ceptual learning and visual discrimination depend on
‘unitization’—the formation of a unitary representation of the col-
lection of features in a learned image40,41. The hypothesis that uni-
tization is dependent on IT neurons that become selectively tuned
for combinations of features in learned images, neurons for which
“the whole is greater than the sum of the parts”23–25, is supported
by our finding of enhanced selectivity for whole batons. Using
stimuli in which distinctive features are segregated in discrete
regions was necessary to demonstrate this phenomenon. It is rea-
sonable to assume that this training effect also occurs with natur-
al images, in which features are intermingled. If so, it could account
for the ability of experts to discriminate among objects in their
domain of expertise on the basis of ‘configural’ or ‘holistic’ cues.

METHODS
Tasks. In the discrimination task, the monkey depressed two levers with
the right and left hands while maintaining fixation within 1.5° of a spot
centered on the monitor. After 500 ms of fixation, the spot was replaced

for 100 ms by a centrally placed baton approximately 5° tall and 2° wide.
The monkey had to maintain central fixation until releasing one of the
levers within 800 ms in order to receive liquid reward. Training to 80%
criterion required ∼ 5,000 trials on each baton for monkey 1 and ∼ 7,000
trials for monkey 2. Each monkey continued to perform the task through-
out the neuronal data collection period.

In the fixation task, the monkey maintained central fixation during a
300-ms period before the stimulus, then during a 500-ms period when a
single baton was presented centrally, and finally during a 300-ms peri-
od after the stimulus. This was followed immediately by reward. Before
neuronal data collection began, monkeys 1 and 2 had passively viewed
each of the 16 batons approximately 500 and 300 times, respectively.

Recording methods. Recordings were made with varnish-coated tung-
sten electrodes introduced into the cortex through a guide tube pene-
trating the dura. Eye movements were monitored with implanted ocular
search coils. All procedures were approved by the Carnegie Mellon Uni-
versity Institutional Animal Care and Use Committee and were in accor-
dance with the guidelines set forth in the NIH Guide for the Care and
Use of Laboratory Animals. Recording sites, localized by magnetic reso-
nance imaging, occupied the ventral aspect of the temporal lobe lateral to
the anterior medial temporal sulcus, and thus were in visual area TE of
the inferior temporal lobe, as distinct from perirhinal cortex (Fig. 1b).
Monkey 1: 16–19 mm anterior, 17–20 mm lateral. Monkey 2: 16–20 mm
anterior, 17–21 mm lateral (Horsley-Clarke coordinates).

Data analysis. In analyzing data from each session, we first determined
whether at least one baton out of the eight elicited a significant visual
response (t-test comparing firing rates during epochs 0–250 ms before
fixation spot onset and 50–550 ms after stimulus onset, P < 0.01). Sub-
sequent steps of analysis focused on 502 sessions meeting this criterion
and on the firing rate 50–550 ms after stimulus onset. The 502 sessions
comprised 142 cases in which a neuron contributed data on two pairs of
learned and unlearned tetrads and 218 cases in which a neuron con-
tributed data on only one pair. In population analyses, the results of the
502 sessions were treated as independent observations. Follow-up analy-
sis showed that the observed learning effects (i) did not differ signifi-
cantly in magnitude between cases in which a neuron was tested in one
versus two sessions and (ii) persisted in the reduced data set that con-
tained just the first session for each neuron.

To determine how frequently part- and whole-based selectivity
occurred, two-way ANOVAs were performed on the responses of neu-
rons to learned and unlearned tetrads. Because the number of observa-
tions per condition was small (n = 16) and because neural counts tend
to follow a Poisson distribution with variances proportional to the mean,
we transformed firing rates before the ANOVA. The square root trans-
formation X’ = (X + 0.5)0.5 was used, where X is raw firing rate and X’
is transformed firing rate. This transformation stabilizes variances when
samples are taken from a Poisson distribution42.

A pattern-of-interaction index was computed as (x1 – x4)2/V, where the
x variables were the mean firing rates elicited by the most effective baton
(x1), the two batons sharing a part with it (x2, x3), and the baton sharing no
parts with it (x4), and V was the variance of xn. Each value in the range
4.00–6.00 could, in principle, have arisen from either of two firing rate pat-
terns differentiated by whether (x1 – x2 – x3 + x4) was positive or negative.
However, there was no case in which this term had a negative value.

A neuron might be unaffected by the identity of a part at a given loca-
tion either (a) because it was nonselective for the part or (b) because the
part fell outside its classic or its object-centered43 receptive field (RF). To
estimate the frequency of such cases, we carried out an analysis based on
the principle that, for a given neuron, type-a effects should vary inde-
pendently across tetrads, whereas type-b effects should be consistent across
tetrads. Considering 1,004 cases (502 sessions × 2 baton-based locations),
we counted cases in which neuronal activity was significantly affected by
the identity of a part at a given location. Cases were categorized by whether
selectivity was present in both the learned and the unlearned tetrad 
(nb = 134), in the learned tetrad alone (nl = 226), in the unlearned tetrad
alone (nu = 159) and in neither (nn = 485). From these counts, we esti-
mated three probabilities: the probabilities that a neuron discriminated
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between two learned parts (Pl) or between two unlearned parts (Pu) at a
given location when that location fell in its RF, and the probability that a
given location fell in the neuron’s RF (Pr). These probabilities were com-
puted from the counts nb, nl, nu and nn, and the identities: nb =
Pr*Pl*Pu*N, nl = Pr*Pl*[1 – Pu]*N, nu = Pr*[1 – Pl]*Pu*N and nn = [1 –
Pr]*N + Pr*[1 – Pl]*[1 – Pu]*N, where N = nb + nl + nu + nn. Resulting
estimates of Pl, Pu and Pr were 0.457, 0.372 and 0.783, respectively.
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