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Abstract

The detection of occluding contours in images of 3-D
scenes is a fundamental problem of vision. We present
a computational model of contour processing that was
suggested by neurophysiological recordings from the
monkey visual cortex. The model employs convolu-
tions and nonlinear operations, but no feedback loops.
Contours are defined by the local maxima of the re-
sponses of a contour operator that sums a represen-
tation of contrast borders and a “grouping signal”.
The grouping consists in convolving a representation
of “key-points”, such as T-junctions, corners, and line
ends, with a set of orientation selective kernels, and
a nonlinear pairing operation. The grouping scheme
is selective according to whether the configuration of
key-points is consistent with the interpretation of oc-
clusion. The resulting contour representation includes
an indicator of figure-ground direction. We show (1)
that the model reproduces illusory contours in accu-
rate agreement with perception, and (2) generates rep-
resentations of occluding contours on images of natu-
ral scenes that are more complete and less cluttered
by spurious connections of foreground and background
than those obtained by conventional edge detection
operators.

1 Introduction

The identification of occluding contours in images is a
fundamental problem of vision. We consider occlud-
ing contours as a statistical process. In general there
1s some discontinuity at these contours, a luminance or
color contrast, a difference in disparity or velocity, or
some discontinuity of pattern. Thus a visual system
can use different strategies, depending on the scene
and the viewing conditions. Any of them will fail un-
der some conditions, and only a combination will give
a robust contour representation.
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Here we discuss contour definition in static, monoc-
ular images. In this case, the cues of contrast and
discontinuity of pattern are available. Since object
contours are generally smooth, most images are rich
in one-dimensional structures such as edges and lines.
This is why anisotropic, orientation selective filters are
suitable for the detection of contrast defined contours.
For the same reason, occlusion often produces termi-
nations of such structures, i.e. T-junctions, corners
and line ends. Therefore, these features are indicators
of occlusion and can serve to identify occluding con-
tours, and to infer contours even when contrast fails
(“anomalous contours”, contours with vanishing con-
trast). This might be the basis of the perception of “il-
lusory contours”. Von der Heydt and Peterhans have
described corresponding neuronal mechanisms in mon-
key visual cortex [12][16]. They also proposed a neural
model that would infer occluding contours (and pro-
duce illusory contours) by integrating the responses of
end-stopped cells [11].

Several computational models of illusory contours
have been presented. Ullman [14] proposed a network
algorithm that interpolates given pieces of contour
across a gap. The resulting lines were similar in shape
to the perceived illusory contours. However, he did
not deal with the problem of how to extract or select
the inducing pieces of contour from an image. Gross-
berg & Mingolla [5] presented a model that simulates
the contour process from the beginning and employs a
cooperative feedback network to achieve contour com-
pletion. More recent studies, referring to the neural
model [11], explicitly modelled end-stopped cells as in-
dicators of occlusion features and used these to gener-
ate illusory contours [2] [13]. All these computational
models employ some form of feedback loops in order to
resolve inconsistencies of representation. Apparently,
none of these models has been tested on more complex
images such as natural scenes.



Here we present a computational model of a contour
mechanism based on the idea of Peterhans and von der
Heydt [11] that involves only bottom-up computations
and works on complex images. In principle, this model
is simple. It infers occluding contours by integrating
“end-stopped cell” responses over some neighborhood
in the image. We show that the model (1) reproduces
illusory contours in accurate agreement with percep-
tion, and (2) generates representations of occluding
contours on images of natural scenes that are more
complete and less cluttered by faulty connections of
foreground and background than those obtained by
conventional edge detection operators.

2 Model Overview

The model builds upon two representations of image
features.

(1) Edges and lines, which can be considered as
1-D signal variations, are represented by the modulus
of oriented even and odd symmetrical filter outputs
(6 orientation channels). We call this the C repre-
sentation because of the similarity to visual cortical
“complex cells”. These neurons are known to respond
in a similar way to edges and lines, irrespective of
contrast polarity. The modulus of quadrature filters
represents image contrast in a unified way and relates
to the oriented energy concepts that have been pro-
posed in computer vision [4][3][10] and for models of
biological vision systems [1][9].

(2) 2-D signal variations such as corners, line ends
or junctions are represented by end-stopped (ES)
operators with asymmetrical and symmetrical end-
stopping which correspond to a discrete implementa-
tion of first and second directional derivatives along
the C channels. First derivatives taken in the pre-
ferred direction of the of channels make explicit dis-
continuities in the contrast signals. These occur at
locations where image structures terminate (e.g. line
ends) or change their orientation abruptly (corners).
Additionally, the sign of first derivative signals pro-
vides information about the direction of termination.
The second directional derivatives detect “symmetri-
cal” signal changes in the oriented C channels as they
occur with strong curvature and blob-like image struc-
tures. We found that 2-D features are best localized
when combining the local values of first and second
derivatives in a way analogous to the quadrature fil-
ters. Key-points are then defined as maximain a local
neighborhood. The ES operator also involves a com-
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pensation of spurious responses to 1-D signal varia-
tions. The filters, C operators and ES operators are
described in detail in Ref. [6].

The information of the key-points is collected by an
operation that we call “Grouping”. The goal of this
operation is an improved definition of occluding con-
tours at sites where the contrast across the contour is
weak or null. It is based on the idea that anomalous
pieces of contour are usually associated with occlu-
sion of background structures and therefore marked
by key-points. The grouping consists in convolutions
with a set of orientation selective kernels followed by
nonlinear pairing operations that produce contour sig-
nals if the surrounding configuration of key-points is
consistent with the interpretation of occlusion. This
involves subtle distinctions concerning the information
on contour orientation and direction of occlusion con-
tributed by different types of key-points.

The signals generated by the Grouping operation
are then added to the C representation. Finally,
contours are obtained by finding the local maxima
(ridges) of the combined representation, and an in-
dicator of figure-ground direction is computed.

3 Computation of Grouping

3.1 Grouping field

The grouping operation uses the responses of asym-
metrical ES operators (first directional derivatives) at
the key-points. These responses are weighted and con-
volved with a grouping field F in different orientations.
The weighting is determined by the type and orienta-
tion of each key-point, as will be described below. For
orientation zero the grouping field F' has the form

0 otherwise

1
where o determines the spatial support of the Ga,Els2
sian radial component and n the orientation selectivity
given by the angular component. Rotated copies of F'
are used for other orientations (12 lobes in steps of
30°). For the present results we set n = 4, and o was
chosen so as to make F' about 4 times larger than the



spatial filters. Contour plots of a pair of horizontally
oriented grouping fields (lobes) are shown in Fig. 1.

Figure 1: Two grouping fields of opposite orientation

The use of a polar separable integration kernel has
the advantages that (1) angular selectivity does not
depend on radial distance and that (2) the tapered
form narrows the spread of grouping responses near
key-points such that the completed contours pass ex-
actly through these points.

3.2 Convolution and multiplicative
connection

We use the notation

F+Q=3 F(x—zi,y—w) Qs (2)
k

for the “convolution” of a function @ defined at cer-
tain points (indexed by k) with a continuously defined
function F.

The grouping response G is defined as the product
of the convolutions of ES signals with two grouping
fields of opposite orientations.

G=[F"+Q) (F~«Q)} 3)
F~ and F* denote the grouping fields. For horizontal
orientation, as shown in Fig. 1, F~ and F* indicate
right and left field lobes, respectively. @ represents the
weighted ES responses at the key-points as specified
further below. The multiplication of opposite field in-
puts is important as it confines the grouping response
to regions between key-points. Only if there is input
to both grouping field lobes a response is generated,
isolated key-points have no effect.
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3.3 Selectivity of grouping

We now turn to the definition of @ of Equation 3. The
multiplicative connection between the lobes allows to
make the process selective for the relation between
the ES responses in the two lobes and to implement
a “logic” of grouping. We compute separate grouping
responses (G and G!) for the two principal directions
of background terminations on a boundary:

Gl = [(F=+Q'=) (F~+Q!-)]}
(4)

Gl

Il

[(F= + Q=) - (F— +Qim)]?

The vertical arrows in the superscript of ) indicate the
directions of termination. For a horizontal grouping
field 1 denotes the ES channels signalling upward ter-
mination and | downward termination. These termi-
nations are assumed to originate from occluded back-
ground structures and must be roughly orthogonal (the
exact meaning of “roughly orthogonal” is defined be-
low) to the grouping field orientation. The reason for
introducing the up- and downward distinction is to
improve specificity and to provide a mean for deriv-
ing figure-ground direction: the occluded structures
are likely to be background. The directional selec-
tivities for the ES channels parailel to the grouping
field orientation are indicated by horizontal arrows in
the superscript of . These directions are assumed to
originate from foreground structures.

Fig. 2 illustrates the logic of grouping for pairs of
corners in different arrangements. The rays schemati-
cally indicate the ES responses at the key-points. The
situation in Fig. 2A matches the selectivity of the hor-
izontal G7 channel. The other examples in Fig. 2 do
not produce a grouping response because the horizon-
tal ES components do not qualify or the vertical com-
ponents have inconsistent directions.

v v

Figure 2: The selectivity of grouping for the direction of
termination produces only responses to (A).

©



3.4 Ortho and para grouping

These processes differ in the way the end-stopped sig-
nals are integrated. There are two limiting cases of
key-points associated with anomalous contours; a con-
tour may be anomalous on one side of the key-point
(corner) or on both sides (line end).

(1) In the first case, a piece of the occluding con-
tour is represented. On the assumption that contours
are generally smooth, its orientation can be used for
extrapolation. There is also information about the
direction of occlusion (foreground-background). How-
ever, both informations are ambiguous: either of the
two edges of the corner could be the occluding edge.

(2) In the case of a line end there is no informa-
tion on the orientation of the occluding contour, ex-
cept that angles near 90° relative to the line are more
likely than angles near 0° and 180° (see below). But
there i1s no ambiguity as to the direction of occlusion;
the line must be background. Both types of key-points
carry of course positional information. Thus the pro-
cess of grouping must treat the key-points differently.
We speak of para grouping in the case where the con-
tour forms by extrapolation of an existing feature, and
of ortho grouping in the case where it tends to form
orthogonally. We emphasize the logical difference be-
tween the two processes. However, since most key-
points are between those extremes, we do not classify,
but rather assign to each key-point a value of “corner-
ness” k that specifies its relative contribution to ortho
(O) and para (P) grouping.

Q=(1-%k)0 + kP (5)

& is defined as the ratio of the sum of geometric and
arithmetic means of orthogonal pairs of ES responses:

> VE: Ei,
:

= —_— 6
1Y (Bi+ Eiy) ©
1
Ej; is the ES signal in orientation i and Ej;, that one
orthogonal to it. Thus « is sensitive to the occurrence
of orthogonal ES signals at a key-point. For corners,
« approaches 1 and such key-points contribute mainly
to para grouping, for line ends, k is 0 and these key-
points contribute only to ortho grouping. In general,
key-points have intermediate values and contribute to
both.
On the assumption that foreground and back-
ground are statistically independent, the probability
that a line element of the background is intersected
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by a foreground contour at an angle between 6 and
8 + df is proportional to dl sinf df, where dl is the
(infinitesimal) length of the element. Thus, 90° is the
most likely angle of intersection, but acute and obtuse
angles have decreasing probability. Ortho as well as
para grouping should therefore accept a range of back-
ground orientations, weighted with the sine of their
angle relative to grouping orientation.

Taking into account the orientation tuning of the
ES operators, simple summation of ES responses of
3 neighboring orientation channels approximates the
sine law.

Ei=E+Ein+E (7)
For ortho grouping we use exactly this range of roughly
orthogonal ES signals (ET and E!).

ET

o' = and o!=F! (8)
Although the exact orientation is not critical (orien-
tation tolerance), the selectivity for the direction of
termination (denoted by { and |) is preserved.

For para grouping, one limb of the ES responses
comes from a foreground edge. Its orientation can be
used for the extrapolation of contour, and the direc-
tions of termination of the (roughly) orthogonal chan-
nels provide for the figure-ground distinction. Thus,
for para grouping we define the contribution of a key-
point by:

P1= = ol B~ Plm=ptem g
P~ = pt E- Pi= =pl B~
with
1 B
14 = o
ET 4+ Bl
(10)
Bl
L = — = 1-p
g BT+ B p

E~ and E* provide selectivity for the orientation
of the foreground limb, and the factors p! and p!
(0 < p £ 1), indicating the relative proportion of up-
and down-pointing background terminations, add se-
lectivity for the direction of occlusion.

Fig. 3 illustrates the selectivities under the different
regimes of ortho and para grouping.
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Figure 3: Scheme of orientations of ES responses accepted
for grouping under ortho and para regimes. Single lines
emerging from key-points indicate ES channels treated
as foreground (£, E"), triplets indicate orientations
treated as background (E', E'). The example is given
for grouping fields of horizontal orientation.

The combined ortho and para contributions of a key-
point are:

Q™ = (1-k)0O" 4+ P~
Q" = (1-k)O" 4+ xPI-
(11)
Q' = (1-k)0O' + xPI=
Q- = (1-x)0' 4+ kP~

Substituting these expressions into Eqn. 4 defines the
grouping responses. An overview of the selectivities
of grouping is given in Table 1. For the line end and
corner features shown in the top row and horizontal
field orientation, Q takes the values of the ES channels
(£) located in rows 3-6 in the table. Cases with no
contribution are marked by a zero. The table shows
that in para grouping (corners), left and right group-
ing fields are sensitive to the direction of the parallel
ES responses (E~, E~). The lower part of Table 1
contains the values of the “cornerness” measure xk as
well as p! and p!.

R b PR
[F_FPPF-[ F~ TF- [ F~ [F~ |
Q- B[ 0 B[ 0O O
Q- & [ 0 [0 E- 00
Q=T 0 [ o0 B0
Q- 0 [ 00 [0 [E
x 0 [0 [ 1 1 ]1]1
Fii T 0 [ 1T 1[0 ]0
o 0 | 1 [0 0 | 1|1

Table 1: Selectivities of grouping (see text)
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3.5 Curved contours

The contours generated with this scheme tend towards
a straight connection between key-points and thus in-
adequately represent curved anomalous contours. In
order to achieve more flexibility, we compute group-
ing responses similar to the straight fields with bent
arrangements of grouping fields (up to +/~60°). The
contributions of all field assemblies are then added ac-
cording to the scheme of Fig. 4:

. 1
Gl = Gl +Gl+Gl +5(Gl+Gl 4Gl +GlL) (12)

o <

Figure 4: (A) Indexing of field lobes used in above equa-
tion. (B) ES channel selectivities

The directions of ES channels accepted by individual
lobes are schematically indicated in Fig. 4 B. Grouping
selective for down-pointing background terminations
(GY) is then computed in an equivalent way.

We also use cross-orientation inhibition of the form

N/2
Z VGi-Gi,
-

% Z (G. + GA&L)
=1

in order to suppress grouping in the presence of signals
in multiple orientations. £ is a scalar factor multiplied
with the output of all G channels.

£ =1 (13)

3.6 Final contour representation

The sum G = G + G! is combined with the C repre-
sentation (contrast defined boundaries) in a channel-
wise fashion for the local “strength of contour”,

H;=Ci+g0G; (14)



C; is the output of the “complex-cell” channel of ori-
entation i and G; is the grouping channel of the same
orientation. g is a constant that controls the relative
weight of the grouping signal. The position of contour
is then extracted on the combined maps H; by finding
ridges of activity in the locally dominant channel.

The difference between G and G at the orienta-
tion of the contour (defined by the channel of maxi-
mum output, Gma,) indicates the direction of occlu-
sion FB (Foreground-Background) by the sign of the
result and the value indicates the strength of evidence
for it.

FB direction = C;',Tmz - G'.{,M (15)

4 Results

4.1 Illusory contour figures

We have tested the performance and scope of the con-
tour scheme on many of the well-known illusory fig-
ures and found a very good agreement with percep-
tion. The examples presented below are a selection to
illustrate the major points.

Fig. 5 A shows a Kanizsa triangle and the four-
armed Ehrenstein figure. Both contain key-point con-
figurations consistent with an occlusion situation. The
map of key-points with polar plots of the correspond-
ing ES signals are shown in Fig. 5 B. The length of the
rays indicates the strength of response of ES channels
in the respective directions. The contour representa-
tion at the level of combined C and grouping signals is
shown in Fig. 5 C. For demonstration, the output has
been summed over orientation. In Fig. 5 C, contour
position has been made explicit by finding the local
maxima (ridges) of dominant orientation channels (H
of Eqn. 14). The Kanizsa triangle is mainly the re-
sult of para grouping, while ortho grouping dominates
in the Ehrenstein figure, where contour formation is
perpendicular to the line terminations. Para grouping
would simply complete the figure to a cross. The flex-
ibility, introduced by bent grouping fields, produces
the circular shape of the contour.

Fig. 6 demonstrates the generation of contours in
a curved Kanizsa triangle. The result corresponds to
the perception of “illusory” curvature.
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Figure 5: Two typical examples of illusory figures, the
Kanizsa triangle and the four-armed Ehrenstein figure (A).
(B) Map of key-points with termination signals of ES chan-
nels superimposed (polar plots). The rays point in the
direction of termination. (C) Combined grouping and
C-responses. (D) Maxima of the locally dominant orienta-
tion channel.
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Figure 6: Curved illusory contours. Left: Input image,
right: Result obtained from the contour model.

Figure 7: Demonstration of figure-ground distinction. (A)
Images displaying a textured illusory square overlaying a
textured plane (left) and a square-window hole through
which another textured plane is seen (right). (B) Contour
map, and (C) figure-ground assignment produced by the
model (see text). (A) is redrawn from Kanizsa (7).
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Fig. 7 has been chosen to illustrate the assignment of
figure-ground direction. On the left of Fig. 7A one can
see a square with a disk texture floating above a plane
with similar texture. On the right side a disk texture
is seen through a square window.

Fig. 7B shows that grouping completed the squares.
Fig. 7C displays the foreground /background direction
given by the FB measure of Equation 15. The rays
originating from the contours point towards the back-
ground. The length of the rays is proportional to the
strength of the FB signal. The assignment of figure-
ground direction shows a reversal for the left and right
square which correctly 1dentifies the left square as fore-
ground and the right one as background.

4.2 Natural scenes

The contour scheme was also tested with gray-
valued images of natural scenes as displayed in the
top row of Fig. 8. The left one is cut-out from an
image taken from Marr [8], the other one is a photo-
graph of a pile of stones. Both images contain a rich
repertoire of occlusion situations including regions of
absent or vanishing figure ground contrast. The mid-
dle row of Fig. 8 shows the local response maxima of
only the C representation i.e., the map of contrast de-
fined boundaries. The result of the combined C and
grouping representations is depicted in the bottom row
of Fig. 8 (the maps are overlayed on contrast reduced
versions of original images). The most prominent com-
pletions are encircled with corresponding markings on
the C maps (middle row) and original images. At the
cross-over points of the wire in Fig. 8 (left) also the
background wires have been completed. This is due
to the local configuration of key-points and the pat-
tern of ES signals being highly symmetrical and thus
ambiguous with respect to the foreground-background
distinction. There are also completions that do not
correspond to object boundaries, for example the in-
dentation of the leaf in the upper left corner of Fig. 8,
marked by an arrow. However, if one considers the
complexity and the wealth of possible connections be-
tween the key-points in the images, grouping has been
rather selective. The majority of the connections are
established on true object boundaries that are not ex-
plicitly defined in the C representation. In addition,
some boundaries with low or vanishing contrast were
enhanced by the grouping signals thus leading to a
more stable representation of contour.



Figure 8: Application of contour scheme to natural scenes. Top row: input images. Middle row: contrast defined contours
given by local maxima of dominant C channels. Bottom row: Result of combined C and grouping representations (see
text).
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5 Conclusions

We have developed a computational model of con-
tour perception based on neural mechanisms suggested
by physiological experiments. The model is hierar-
chical and involves no feedback loops. It reproduces
many features of human contour perception, in par-
ticular the formation of illusory contours under a va-
riety of conditions, with a single set of parameters.
The fact that biological vision systems seem to incor-
porate strategies to infer anomalous contours at an
early stage points to their significance in vision. In
this respect the term “illusory contours” is mislead-
ing, because representing occluding contours in the ab-
sence of consistent contrast appears vital to the task of
segmenting images meaningfully. Of course, contour
formation must be selective, adapted to the statistics
occurring in situations of occlusion. The “logic” of
grouping as implemented in the present model tries
to define at least some of these constraints. The re-
sults on natural scenes, which contain an ample va-
riety of different occlusion features, are encouraging
and demonstrate that the model may be useful also in
machine vision. However, there are shortcomings of
the present model. The model cannot resolve ambigu-
ities and tends to complete also the background. We
believe, however, that this problem has to be solved
at a higher stage, where form descriptions are derived
from the contour and key-point representations. We
plan to extend our model in this direction.
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